
May 2002

The Economic Impacts of
Inadequate Infrastructure for

Software Testing

Final Report

Prepared for

Gregory Tassey, Ph.D.
National Institute of Standards and Technology

Acquisition and Assistance Division
Building 101, Room A1000

Gaithersburg, MD 20899-0001

Prepared by

RTI
Health, Social, and Economics Research

Research Triangle Park, NC 27709

RTI Project Number 7007.011

RTI Project Number
7007.011

The Economic Impacts of
Inadequate Infrastructure for

Software Testing

Final Report

May 2002

Prepared for

Gregory Tassey, Ph.D.
National Institute of Standards and Technology

Acquisition and Assistance Division
Building 101, Room A1000

Gaithersburg, MD 20899-0001

Prepared by

RTI
Health, Social, and Economics Research

Research Triangle Park, NC 27709

iii

Contents

Executive Summary ES-1

1. Introduction to Software Quality and Testing 1-1

1.1 Software Quality Attributes...1-3

1.2 Software Quality Metrics ..1-7
1.2.1 What Makes a Good Metric....................................1-9
1.2.2 What Can be Measured ...1-9
1.2.3 Choosing Among Metrics1-10

1.3 Software Testing ..1-11

1.4 The Impact of Inadequate Testing1-13
1.4.1 Failures due to Poor Quality.................................1-13
1.4.2 Increased Software Development Costs1-14
1.4.3 Increased Time to Market.....................................1-14
1.4.4 Increased Market Transaction Costs....................1-15

2. Software Testing Methods and Tools 2-1

2.1 Historical Approach to Software Development...................2-1

2.2 Software Testing Infrastructure ..2-5
2.2.1 Software Testing Stages ..2-5
2.2.2 Commercial Software Testing Tools2-8

2.3 Software Testing Types ...2-10
2.3.1 Conformance Testing ...2-10
2.3.2 Interoperability Testing ...2-12
2.3.4 Relationship between Software Stages,

Testing Types, and Testing Tools2-14
2.3.5 Standardized Software Testing Technologies......2-17

iv

3. Inadequate Infrastructure for Software Testing: Overview
and Conceptual Model 3-1

3.1 Software Testing Inadequacies..3-2
3.1.1 Integration and Interoperability Testing Issues.......3-2
3.1.2 Automated Generation of Test Code......................3-3
3.1.3 Lack of a Rigorous Method for Determining

When a Product Is Good Enough to Release3-3
3.1.4 Lack of Readily Available Performance

Metrics and Testing Procedures.............................3-4
3.1.5 Approaches for Improving Software Testing

Infrastructure ..3-5

3.2 Conceptual Economic Model ...3-6

3.3 Software Developers..3-7
3.3.1 Cost Framework ...3-7
3.3.2 Factors Influencing the Profit-Maximizing

Level of R&D Expenditures3-9

3.4 End Users ..3-12
3.4.1 Cost Framework ...3-12

3.5 The Market for Software Products3-14
3.5.1 Quality’s Impact on Market Prices........................3-14

3.6 Modeling an Inadequate Software Testing
Infrastructure..3-16
3.6.1 Inadequate Infrastructure’s Impact on the

Cost of Quality..3-18
3.6.2 Inadequate Infrastructure’s Impact on the

Cost of After-Sales Service3-19
3.6.3 Inadequate Infrastructure’s Impact on End-

Users’ Demand...3-20
3.6.4 Aggregate Impact ...3-20

3.7 The Time Dimension ..3-21

3.8 Conclusion ...3-22

4. Taxonomy for Software Testing Costs 4-1

4.1 Principles that Drive Software Testing Objectives4-1
4.1.1 Testing Activities ..4-2
4.1.2 Detecting Bugs Sooner ..4-3
4.1.3 Locating the Source of Bugs Faster and with

More Precision ...4-3

4.2 Software Developers’ Cost Taxonomy...............................4-3

v

4.2.1 Resource Categories..4-4
4.2.2 Summary of Developer Technical and

Economic Metrics ...4-7

4.3 Software Users’ Cost Taxonomy..4-8
4.3.1 Pre-purchase Costs..4-8
4.3.2 Installation Costs ..4-9
4.3.3 Post-purchase Costs ..4-11

5. Measuring the Economic Impacts of an Inadequate
Infrastructure for Software Testing 5-1

5.1 Defining the Counterfactual World5-1
5.1.1 Developers’ Costs of Identifying and

Correcting Errors ..5-6
5.1.2 Counterfactual Scenario for Developers5-11
5.1.3 Counterfactual Scenario for Users5-12

5.2 Custom Versus Commercial Software Products5-12

5.3 Estimating Software Developer Costs..............................5-14

5.4 Estimating Software User Costs5-17

5.5 Period of Analysis ..5-22

5.6 Industry-Specific User Costs..5-24

6. Transportation Manufacturing Sector 6-1

6.1 Overview of CAD/CAM/CAE and PDM Software in
the Transportation Manufacturing Sector...........................6-2
6.1.1 Use of CAD/CAM/CAE and PDM Software............6-3
6.1.2 Development of CAD/CAM/CAE and PDM

Software ...6-5

6.2 Software Developer Costs in the Transportation
Manufacturing Sector ...6-7
6.2.1 Estimation Approach ..6-8
6.2.2 Survey Findings..6-9
6.2.3 Cost Impacts Per Employee for Software

Developers ...6-14
6.2.4 Industry-Level Impact ...6-15

6.3 End-User Costs in the Transportation Manufacturing
Sector...6-16
6.3.1 Survey Method ...6-17
6.3.2 Survey Response Rates and Industry

Coverage..6-18

vi

6.3.3 Survey Findings..6-20
6.3.4 Costs of Bugs and Errors Per Employee..............6-25
6.3.5 Partial Reduction of Software Errors6-28

6.4 Users’ Industry-Level Impact Estimates...........................6-30

7. Financial Services Sector 7-1

7.1 Overview of the Use of Clearinghouse Software and
Routers and Switches in the Financial Services
Sector...7-2
7.1.1 Overview of Electronic Transactions in the

Financial Services Sector.......................................7-3
7.1.2 Software Used by Financial Services

Providers ..7-5
7.1.3 Software Embedded in Hardware Used to

Support Financial Transactions..............................7-6

7.2 Software Developer Costs in the Financial Services
Sector...7-8
7.2.1 Industry Surveys...7-10
7.2.2 Survey Findings..7-11
7.2.3 Cost Impacts Per Employee for Software

Developers ...7-15
7.2.4 Industry-Level Impacts ...7-16

7.3 Software User Costs in the Financial Services Sector.....7-17
7.3.1 Survey Method ...7-17
7.3.2 Survey Response Rates and Industry

Coverage..7-18
7.3.3 Survey Findings...7-21
7.3.4 Software User Costs Per Transaction7-26
7.3.5 Partial Reduction of Software Errors7-29
7.3.6 Users’ Industry-Level Impact Estimates7-31

8. National Impact Estimates 8-1

8.1 Per-Employee Testing Costs: Software Developers8-2

8.2 Per-Employee Costs: Software Users...............................8-5

8.4 National Impact Estimates ...8-7

8.5 Limitations and Caveats...8-8

References R-1

vii

Appendixes

A: Glossary of Testing Stages and Tools A-1

B: CAD/CAM/CAE/PDM Use and Development in the
Transportation Sector.. B-1

C: CAD/CAM/CAE/PDM Developers and Users Survey
Instruments ... C-1

D: Financial Services Software Use and Development D-1

E: Financial Services Survey Instruments E-1

viii

Figures

Figure 2-1 Waterfall Model ...2-3
Figure 2-2 Commercial Software Testing Infrastructure Hierarchy2-6

Figure 3-1 Software Quality’s Role in Profit Maximization3-10
Figure 3-2 Minimize Joint Costs of Pre-sales Testing and After-Sales

Service (Holding Price and Quantity Constant)3-11
Figure 3-3 Change in Quality’s Impact on Price, Quantity, and Net

Revenue..3-17
Figure 3-4 Enhanced Testing Tool’s Impact on the Marginal Cost of

Quality...3-19

Figure 5-1 The Waterfall Process...5-4
Figure 5-2 Typical Cumulative Distribution of Error Detection5-9
Figure 5-3 Software Testing Costs Shown by Where Bugs Are

Detected (Example Only)..5-10
Figure 5-4 Cost Reductions of Detecting Bugs and Fixing Them

Faster (Example Only) ..5-11
Figure 5-5 Custom vs. Commercial Development Cost Allocation.............5-10
Figure 5-6 Relationship between Users Costs and Percentage

Reduction in Bugs...5-23

Figure 6-1 Economic Relationship Among CAD/CAM/CAE Producers
and Consumers...6-3

Figure 6-2 CAD/CAE/CAM and PDM in the Product Development
Cycle ...6-4

ix

Tables

Table 1-1 McCall, Richards, and Walters’s Software Quality
Attributes...1-4

Table 1-2 ISO Software Quality Attributes ..1-6
Table 1-3 List of Metrics Available ..1-8
Table 1-4 Recent Aerospace Losses due to Software Failures1-13
Table 1-5 Relative Costs to Repair Defects when Found at Different

Stages of the Life-Cycle..1-15

Table 2-1 Allocation of Effort...2-4
Table 2-2 The Degree of Usage of the Different Testing Stages with

the Various Testing Types ..2-15
Table 2-3 Software Testing Types Associated with the Life Cycle2-16
Table 2-4 Tools Used by Type of Testing ...2-18
Table 2-5 Tools Used by Testing Stage..2-19

Table 4-1 Labor Taxonomy...4-4
Table 4-2 Software Testing Capital Taxonomy ...4-5
Table 4-3 Impact Cost Metrics for Software Developers.............................4-7
Table 4-4 Users’ Pre-Purchase Costs Associated with Bugs4-9
Table 4-5 Users’ Implementation Costs Associated with Bugs.................4-10
Table 4-6 Users’ Post-purchase Costs Associated with Bugs4-12

Table 5-1 Relative Cost to Repair Defects When Found at Different
Stages of Software Development (Example Only)......................5-7

Table 5-2 Preliminary Estimates of Relative Cost Factors of
Correcting Errors as a Function of Where Errors Are
Introduced and Found (Example Only)5-7

x

Table 5-3 Example of the Frequency (%) of Where Errors Are Found,
in Relationship to Where They Were Introduced5-8

Table 5-4 Impact Cost Metrics for Software Developers...........................5-16
Table 5-5 Cost Metrics for Users ..5-21
Table 5-6 Importance of Quality Attributes in the Transportation

Equipment and Financial Services Industries5-25

Table 6-1 Cost Impacts on U.S. Software Developers and Users in
the Transportation Manufacturing Sector Due to an
Inadequate Testing Infrastructure ($ millions).............................6-2

Table 6-2 Distribution of Bugs Found Based on Introduction Point6-10
Table 6-3 Hours to Fix Bug Based on Introduction Point6-11
Table 6-4 Time to Fix a Bug Based on Discovery Point............................6-12
Table 6-5 Distribution of Bugs Based on Infrastructure6-13
Table 6-6 Developer Testing Costs for a Typical Company of 10,000

Employees ..6-15
Table 6-7 Annual Impact on U.S. Software Developers of

CAD/CAM/CAE/PDM Software...6-16
Table 6-8 Transportation Equipment Industry Survey Completion

Rates
..6-19

Table 6-9 Industry Coverage by Employment...6-19
Table 6-10 Reported Software Products...6-21
Table 6-11 Incidence and Costs of Software Bugs6-23
Table 6-12 Average Company-Level Costs of Search, Installation, and

Maintenance (Life-Cycle Costs)..6-24
Table 6-13 Costs Per Employee ...6-26
Table 6-14 Company-Level Costs Associated with Bugs for

Hypothetical Transportation Company at Different
Employment Levels...6-28

Table 6-15 Cost Reductions as a Function of Bug Reductions...................6-29
Table 6-16 Annual Impacts’ Weighted Cost Per Deposits and Loans6-30

Table 7-1 Cost Impacts on U.S. Software Developers and Users in
the Financial Services Sector Due to an Inadequate
Testing Infrastructure ($ millions)..7-2

Table 7-2 Characteristics of Firms in the Financial Services Sector,
1997..7-4

Table 7-3 Router Market Shares of Major Firms...7-7
Table 7-4 Distribution of Bugs Found Based on Introduction Point7-12
Table 7-5 Hours to Fix Bug based on Introduction Point7-13
Table 7-6 Time to Fix a Bug Based on Discovery Point............................7-14

xi

Table 7-7 Shift in the Distribution of Where Bugs are Found Based
on Infrastructure..7-14

Table 7-8 Developer Testing Costs for a Typical Company of 10,000
Employees ..7-16

Table 7-9 Annual Impact on U.S. Software Developers Supporting
the Financial Services Sector ...7-17

Table 7-10 Financial Industry Survey Completion Rates7-19
Table 7-11 Industry Coverage...7-19
Table 7-12 Reported Software Products...7-22
Table 7-13 Incidence and Costs of Software Errors7-24
Table 7-14 Total Costs of Search, Installation, and Maintenance (Life-

Cycle Costs)..7-25
Table 7-15 Software Bug and Error Costs Per Million Dollars of

Deposits and Loans ..7-28
Table 7-16 Company Costs Associated with Bugs for Hypothetical

Company Sizes...7-28
Table 7-17 Cost Reductions as a Function of Error Reductions7-30
Table 7-18 Annual Impacts’ Weighted Cost Per Deposits and Loans7-31

Table 8-1 National Economic Impact Estimates ...8-2
Table 8-2 FTEs Engaged in Software Testing (2000).................................8-3
Table 8-3 Software Developer Costs Per Tester ..8-5
Table 8-4 National Employment in the Service and Manufacturing

Sectors..8-6
Table 8-5 Per-Employee Cost Metrics ..8-6
Table 8-6 National Impact Estimates ..8-6

ES-1

Executive Summary

Software has become an intrinsic part of business over the last
decade. Virtually every business in the U.S. in every sector
depends on it to aid in the development, production, marketing,
and support of its products and services. Advances in computers
and related technology have provided the building blocks on which
new industries have evolved. Innovations in the fields of robotic
manufacturing, nanotechnologies, and human genetics research
all have been enabled by low cost computational and control
capabilities supplied by computers and software.

In 2000, total sales of software reached approximately $180
billion. Rapid growth has created a significant and high-paid
workforce, with 697,000 employed as software engineers and an
additional 585,000 as computer programmers.

Reducing the cost of software development and improving
software quality are important objectives of the U.S. software
industry. However, the complexity of the underlying software
needed to support the U.S.’s computerized economy is increasing
at an alarming rate. The size of software products is no longer
measured in terms of thousands of lines of code, but millions of
lines of code. This increasing complexity along with a decreasing
average market life expectancy for many software products has
heightened concerns over software quality.

Software nonperformance and failure are expensive. The media
is full of reports of the catastrophic impact of software failure. For
example, a software failure interrupted the New York Mercantile
Exchange and telephone service to several East Coast cities in

The Economic Impacts of Inadequate Infrastructure for Software Testing

ES-2

February 1998 (Washington Technology, 1998). Headlines
frequently read, “If Microsoft made cars instead of computer
programs, product-liability suits might now have driven them out of
business.” Estimates of the economic costs of faulty software in
the U.S. range in the tens of billions of dollars per year and have
been estimated to represent approximately just under 1 percent of
the nation’s gross domestic product (GDP).

In actuality many factors contribute to the quality issues facing the
software industry. These include marketing strategies, limited
liability by software vendors, and decreasing returns to testing and
debugging.

At the core of these issues is the difficulty in defining and
measuring software quality. Common attributes include
functionality, reliability, usability, efficiency, maintainability, and
portability. But these quality metrics are largely subjective and do
not support rigorous quantification that could be used to design
testing methods for software developers or support information
dissemination to consumers. Information problems are further
complicated by the fact that even with substantial testing, software
developers do not truly know how their products will perform until
they encounter real scenarios.

The objective of this study is to investigate the economic impact of
an inadequate infrastructure for software testing in the U.S. The
National Institute of Standards and Technology (NIST) undertook
this study as part of joint planning with industry to help identify and
assess technical needs that would improve the industry’s software
testing capabilities. The findings from this study are intended to
identify the infrastructure needs that NIST can supply to industry
through its research programs.

To inform the study, RTI conducted surveys with both software
developers and industry users of software. The data collected
were used to develop quantitative estimates of the economic
impact of inadequate software testing methods and tools. Two
industry groups were selected for detailed analysis: automotive
and aerospace equipment manufacturers and financial services
providers and related electronic communications equipment
manufacturers. The findings from these two industry groups were

“In analyzing repair
histories of 13 kinds of
products gathered by
Consumer Reports, PC
World found that roughly
22 percent [of PCs] break
down every year—
compared to 9 percent of
VCRs, 7 percent of big-
screen TVs, 7 percent of
clothes dryers and 8
percent of refrigerators”
(Barron, 2000).

Executive Summary

ES-3

then used as the basis for estimating the total economic impact for
U.S. manufacturing and services sectors.

Based on the software developer and user surveys, the national
annual costs of an inadequate infrastructure for software testing is
estimated to range from $22.2 to $59.5 billion.1 Over half of these
costs are borne by software users in the form of error avoidance
and mitigation activities. The remaining costs are borne by
software developers and reflect the additional testing resources
that are consumed due to inadequate testing tools and methods.

ES.1 ISSUES OF SOFTWARE QUALITY
Quality is defined as the bundle of attributes present in a
commodity and, where appropriate, the level of the attribute for
which the consumer (software users) holds a positive value.
Defining the attributes of software quality and determining the
metrics to assess the relative value of each attribute are not
formalized processes. Compounding the problem is that
numerous metrics exist to test each quality attribute.

Because users place different values on each attribute depending
on the product’s use, it is important that quality attributes be
observable to consumers. However, with software there exists not
only asymmetric information problems (where a developer has
more information about quality than the consumer), but also
instances where the developer truly does not know the quality of
his own product. It is not unusual for software to become
technically obsolete before its performance attributes have been
fully demonstrated under real-world operation conditions.

As software has evolved over time so has the definition of
software quality attributes. McCall, Richards, and Walters (1977)
first attempted to assess quality attributes for software. His
software quality model characterizes attributes in terms of three
categories: product operation, product revision, and product
transition. In 1991, the International Organization for
Standardization (ISO) adopted ISO 9126 as the standard for

1Note that the impact estimates do not reflect “costs” associated with mission

critical software where failure can lead to extremely high costs such as loss of
life or catastrophic failure. Quantifying these costs was beyond the scope of
the study.

The Economic Impacts of Inadequate Infrastructure for Software Testing

ES-4

software quality (ISO, 1991). It is structured around six main
attributes listed below (subcharacteristics are listed in
parenthesis):

Z functionality (suitability, accurateness, interoperability,
compliance, security)

Z reliability (maturity, fault tolerance, recoverability)
Z usability (understandability, learnability, operability)
Z efficiency (time behavior, resource behavior)
Z maintainability (analyzability, changeability, stability,

testability)
Z portability (adaptability, installability, conformance,

replaceability)

Although a general set of standards has been agreed on, the
appropriate metrics to test how well software meets those
standards are still poorly defined. Publications by IEEE (1988,
1996) have presented numerous potential metrics that can be
used to test each attribute. These metrics include

Z fault density,
Z requirements compliance,
Z test coverage, and
Z mean time to failure.

The problem is that no one metric is able to unambiguously
measure a particular quality attribute. Different metrics may give
different rank orderings of the same attribute, making comparisons
across products difficult and uncertain.

ES.2 SOFTWARE TESTING INADEQUACIES
Software testing is the action of carrying out one or more tests,
where a test is a technical operation that determines one or more
characteristics of a given software element or system, according
to a specified procedure. The means of software testing is the
hardware and/or software and the procedures for its use, including
the executable test suite used to carry out the testing (NIST,
1997).

Historically, software development focused on writing code and
testing specific lines of that code. Very little effort was spent on
determining its fit within a larger system. Testing was seen as a

Executive Summary

ES-5

necessary evil to prove to the final consumer that the product
worked. As shown in Table ES-1, Andersson and Bergstrand
(1995) estimate that 80 percent of the effort put into early software

Table ES-1. Allocation of Effort

Requirement
s Analysis

Preliminary
Design

Detailed
Design

Coding and
Unit

Testing
Integration
and Test

Syste
m Test

1960s –
1970s

10% 80% 10%

1980s 20% 60% 20%

1990s 40% 30% 30%

Source: Andersson, M., and J. Bergstrand. 1995. “Formalizing Use Cases with Message Sequence Charts.”
Unpublished Master’s thesis. Lund Institute of Technology, Lund, Sweden.

development was devoted to coding and unit testing. This
percentage has changed over time. Starting in the 1970s,
software developers began to increase their efforts on
requirements analysis and preliminary design, spending
20 percent of their effort in these phases.

More recently, software developers started to invest more time
and resources in integrating the different pieces of software and
testing the software as a unit rather than as independent entities.
The amount of effort spent on determining the developmental
requirements of a particular software solution has increased in
importance. Forty percent of the software developer effort is now
spent in the requirements analysis phase.

The Economic Impacts of Inadequate Infrastructure for Software Testing

ES-6

Testing activities are conducted throughout all the development
phases shown in Table ES-1. Formal testing conducted by
independent test groups accounts for about 20 percent of labor
costs. However, estimates of total labor resources spent testing
by all parties range from 30 to 90 percent (Beizer, 1990).

The worldwide market for software testing tools was $931 million
in 1999 and is projected to grow to more than $2.6 billion by 2004
(Shea, 2000). However, such testing tools are still fairly primitive.
The lack of quality metrics leads most companies to simply count
the number of defects that emerge when testing occurs. Few
organizations engage in other advanced testing techniques, such
as forecasting field reliability based on test data and calculating
defect density to benchmark the quality of their product against
others.

Numerous issues affect the software testing infrastructure and
may lead to inadequacies. For example, competitive market
pressures may encourage the use of a less than optimal amount
of time, resources, and training for the testing function (Rivers and
Vouk, 1998), and with current software testing tools developers
have to determine whether applications and systems will
interoperate.

In addition, the need for certified standardized test technology is
increasing. The development of these tools and the
accompanying testing suites often lag behind the development of
new software applications (ITToolbox, 1999). Standardized
testing tools, suites, scripts, reference data, reference
implementations, and metrics that have undergone a rigorous
certification process would have a large impact on the
inadequacies listed above. For example, the availability of
standardized test data, metrics, and automated test suites for
performance testing would make benchmarking tests less costly to
perform. Standardized automated testing scripts along with
standard metrics would also provide a more consistent method for
determining when to stop testing.

In some instances, developing conformance testing code can be
more time consuming and expensive than developing the software
product being tested. Addressing the high testing costs is
currently the focus of several research initiatives in industry and

Software testing
infrastructure
improvements include
enhanced

Z integration and
interoperability testing
tools,

Z automated generation
of test code,

Z methods for
determining sufficient
quality for release,
and

Z performance metrics
and measurement
procedures.

Executive Summary

ES-7

academia. Many of these initiatives are based on modeling finite
state machines, combinatorial logic, or other formal languages
such as Z (Cohen et al., 1996; Tai and Carver, 1995; NIST, 1997;
Apfelbaum and Doyle, 1997).

ES.3 SOFTWARE TESTING COUNTERFACTUAL
SCENARIOS
To estimate the costs attributed to an inadequate infrastructure for
software testing, a precise definition of the counterfactual world is
needed. Clearly defining what is meant by an “inadequate”
infrastructure is essential for eliciting consistent information from
industry respondents.

In the counterfactual scenarios the intended design functionality of
the software products released by developers is kept constant. In
other words, the fundamental product design and intended
product characteristics will not change. However, the realized
level of functionality may be affected as the number of bugs (also
referred to as defects or errors) present in released versions of the
software decreases in the counterfactual scenarios.

The driving technical factors that do change in the counterfactual
scenarios are when bugs are discovered in the software
development process and the cost of fixing them. An improved
infrastructure for software testing has the potential to affect
software developers and users by

Z removing more bugs before the software product is
released,

Z detecting bugs earlier in the software development
process, and

Z locating the source of bugs faster and with more precision.

Note that a key assumption is that the number of bugs introduced
into software code is constant regardless of the types of tools
available for software testing; bugs are errors entered by the
software designer/programmer and the initial number of errors
depends on the skill and techniques employed by the
programmer.

Because it may not be feasible or cost effective to remove all
software errors prior to product release, the economic impact

An improved software
testing infrastructure would
allow developers to find
and correct more errors
sooner with less cost.

The Economic Impacts of Inadequate Infrastructure for Software Testing

ES-8

estimates were developed relative to two counterfactual
scenarios. The first scenario investigates the cost reductions if all
bugs and errors could be found in the same development stage in
which they are introduced. This is referred to as the cost of an
inadequate software testing infrastructure. The second scenario
investigates the cost reductions associated with finding an
increased percentage (but not 100 percent) of bugs and errors
closer to the development stages where they are introduced. The
second scenario is referred to as cost reduction from “feasible”
infrastructure improvements. For the “feasible” infrastructure
improvements scenario, users were asked to estimate the
potential cost savings associated with enhanced testing tools and
users were asked to estimate cost savings if the software they
purchase had 50 percent fewer bugs and errors.

ES.4 ECONOMIC IMPACT OF AN INADEQUATE
SOFTWARE TESTING INFRASTRUCTURE:
AUTOMOTIVE AND AEROSPACE INDUSTRIES
We conducted a case study with software developers and users in
the transportation equipment manufacturing sector to estimate the
economic impact of an inadequate infrastructure for software
testing. The case study focused on the use of computer-aided
design/computer-aided manufacturing/computer-aided
engineering (CAD/CAM/CAE) and product data management
(PDM) software. Interviews were conducted with 10 software
developers (vendors) and 179 users of these products.

Developers of CAD/CAM/CAE and PDM software indicated that in
the current environment, software testing is still more of an art
than a science, and testing methods and resources are selected
based on the expert judgment of senior staff. Respondents
agreed that finding the errors early in the development process
greatly lowered the average cost of bugs and errors. Most also
indicated that the lack of historic tracking data and inadequate
tools and testing methods, such as standard protocols approved
by management, available test cases, and conformance
specification, limited their ability to obtain sufficient testing
resources (from management) and to leverage these resources
effectively.

Executive Summary

ES-9

Users of CAD/CAM/CAE and PDM software indicated that they
spend significant resources responding to software errors
(mitigation costs) and lowering the probability and potential impact
of software errors (avoidance costs). Approximately 60 percent of
the automotive and aerospace manufacturers surveyed indicated
that they had experienced significant software errors in the
previous year. For these respondents who experienced errors,
they reported an average of 40 major and 70 minor software bugs
per year in their CAD/CAM/CAE or PDM software systems.

Table ES-2 presents the economic impact estimates for the
development and use of CAD/CAM/CAE and PDM software in the
U.S. automotive and aerospace industries. The total cost impact
on these manufacturing sectors from an inadequate software
testing infrastructure is estimated to be $1.8 billion and the
potential cost reduction from feasible infrastructure improvements
is $0.6 billion. Users of CAD/CAM/CAE and PDM software
account for approximately three-fourths of the total impact, with
the automotive industry representing about 65 percent and the
aerospace industry representing 10 percent. Developers account
for the remaining one-fourth of the costs.

Table ES-2. Cost Impacts on U.S. Software Developers and Users in the Transportation Manufacturing Sector Due
to an Inadequate Testing Infrastructure ($ millions)

The Cost of Inadequate
Software Testing

Infrastructure
(billions)

Potential Cost Reduction from
Feasible Infrastructure

Improvements
(billions)

Software Developers
CAD/CAM/CAE and PDM $373.1 $157.7

Software Users
Automotive $1,229.7 $377.0
Aerospace $237.4 $54.5

Total $1,840.2 $589.2

The Economic Impacts of Inadequate Infrastructure for Software Testing

ES-10

ES.5 ECONOMIC IMPACT OF AN INADEQUATE
SOFTWARE TESTING INFRASTRUCTURE:
FINANCIAL SERVICES SECTOR
We conducted a second case study with four software developers
and 98 software users in the financial services sector to estimate
the economic impact of an inadequate infrastructure for software
testing. The case study focused on the development and use of
Financial Electronic Data Interchange (FEDI) and clearinghouse
software, as well as the software embedded in routers and
switches that support electronic data exchange.

All developers of financial services software agreed that an
improved system for testing was needed. They said that an
improved system would be able to track a bug back to the point
where it was introduced and then determine how that bug influenced
the rest of the production process. Their ideal testing infrastructure
would consist of close to real time testing where testers could
remedy problems that emerge right away rather than waiting until a
product is fully assembled. The major benefits developers cited
from an improved infrastructure were direct cost reduction in the
development process and a decrease in post-purchase customer
support. An additional benefit that respondents thought would
emerge from an improved testing infrastructure is increased
confidence in the quality of the product they produce and ship. The
major selling characteristic of the products they create is the
certainty that that product will accomplish a particular task.
Because of the real time nature of their products, the reputation loss
can be great.

Approximately two-thirds of the users of financial services
software (respondents were primarily banks and credit unions)
surveyed indicated that they had experienced major software
errors in the previous year. For the respondents that did have
major errors, they reported an average of 40 major and 49 minor
software bugs per year in their FEDI or clearinghouse software
systems. Approximately 16 percent of those bugs were attributed
to router and switch problems, and 48 percent were attributed to
transaction software problems. The source of the remaining 36
percent of errors was unknown. Typical problems encountered
due to bugs were

Financial service software
developers said that better
testing tools and methods
used during software
development could reduce
installation expenditures
by 30 percent.

Executive Summary

ES-11

Z increased person-hours used to correct posting errors,
Z temporary shut down leading to lost transactions, and
Z delay of transaction processing.

Table ES-3 presents the empirical findings. The total cost impact
on the financial services sector from an inadequate software
testing infrastructure is estimated to be $3.3 billion. Potential cost
reduction from feasible infrastructure improvements is $1.5 billion.

Table ES-3. Cost Impacts on U.S. Software Developers and Users in the Financial Services Sector Due to an
Inadequate Testing Infrastructure ($ millions)

The Cost of Inadequate
Software Testing

Infrastructure

Potential Cost Reduction from
Feasible Infrastructure

Improvements

Software Developers

Router and switch $1,897.9 $975.0

FEDI and clearinghouse $438.8 $225.4

Software Users

Banks and savings institutions $789.3 $244.0

Credit unions $216.5 $68.1

Total Financial Services Sector $3,342.5 $1,512.6

Software developers account for about 75 percent of the
economic impacts. Users represented the remaining 25 percent
of costs, with banks accounting for the majority of user costs.

The Economic Impacts of Inadequate Infrastructure for Software Testing

ES-12

ES.6 NATIONAL IMPACT ESTIMATES
The two case studies generated estimates of the costs of an
inadequate software testing infrastructure for software developers
and users in the transportation equipment manufacturing and
financial services sectors. The per-employee impacts for these
sectors were extrapolated to other manufacturing and service
industries to develop an approximate estimate of the economic
impacts of an inadequate infrastructure for software testing for the
total U.S. economy.

Table ES-4 shows the national annual cost estimates of an
inadequate infrastructure for software testing are estimated to be
$59.5 billion. The potential cost reduction from feasible
infrastructure improvements is $22.2 billion. This represents
about 0.6 and 0.2 percent of the U.S.’s $10 trillion dollar GDP,
respectively. Software developers accounted for about 40 percent
of total impacts, and software users accounted for the about
60 percent.

Table ES-4. Costs of Inadequate Software Testing Infrastructure on the National Economy

The Cost of Inadequate Software
Testing Infrastructure
(billions)

Potential Cost Reduction from Feasible
Infrastructure Improvements
(billions)

Software developers $21.2 $10.6
Software users $38.3 $11.7
Total $59.5 $22.2

1-1

Introduction to
Software Quality1 and Testing

Software is an intrinsic part of business in the late 20th century.
Virtually every business in the U.S. in every sector depends on it
to aid in the development, production, marketing, and support of
its products and services. This software may be written either by
developers who offer the shrink-wrapped product for sale or
developed by organizations for custom use.

Integral to the development of software is the process of
detecting, locating, and correcting bugs.

In a typical commercial development organization, the cost
of providing [the assurance that the program will perform
satisfactorily in terms of its functional and nonfunctional
specifications within the expected deployment environments]
via appropriate debugging, testing, and verification activities
can easily range from 50 to 75 percent of the total
development cost. (Hailpern and Santhanam, 2002)

In spite of these efforts some bugs will remain in the final product
to be discovered by users. They may either develop
“workarounds” to deal with the bug or return it to the developer for
correction.

Software’s failure to perform is also expensive. The media is full
of reports of the catastrophic impact of software failure. For
example, a software failure interrupted the New York Mercantile
Exchange and telephone service to several East Coast cities in

Beizer (1990) reports that
half the labor expended to
develop a working
program is typically spent
on testing activities.

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-2

February 1998 (Washington Technology, 1998). More common
types of software nonperformance include the failure to

Z conform to specifications or standards,
Z interoperate with other software and hardware, and
Z meet minimum levels of performance as measured by

specific metrics.

Reducing the cost of software development and improving
software quality are important objectives of the commercial U.S.
software industry and of in-house developers. Improved testing
and measurement can reduce the costs of developing software of
a given quality and even improve performance. However, the lack
of a commonly accepted measurement science for information
technology hampers efforts to test software and evaluate the tests’
results.

Software testing tools are available that incorporate proprietary
testing algorithms and metrics that can be used to measure the
performance and conformance of software. However, the value of
these tools and the metrics they produce depend on the extent to
which standard measurements are developed by consensus and
accepted throughout the software development and user
community (NIST, 1997). Thus, development of standard testing
tools and metrics for software testing could go a long way toward
addressing some of the testing problems that plague the software
industry.

Improved tools for software testing could increase the net value
(value minus cost) of software in a number of ways:

Z reduce the cost of software development and testing;
Z reduce the time required to develop new software

products; and
Z improve the performance, interoperability, and

conformance of software.

However, to understand the extent to which improvements in
software testing metrology could provide these benefits, we must
first understand and quantify the costs imposed on industry by the
lack of an adequate software testing infrastructure. The objective
of this study is to develop detailed information about the costs
associated with an inadequate software testing infrastructure for
selected software products and industrial sectors.

“[A] study of personal-
computer failure rates by
the Gartner Group
discover[ed] that there was
a failure rate of 25 percent
for notebook computers
used in large American
corporations” (Barron,
2000).

“Gary Chapman, director
of the 21st Century Project
at the University of Texas,
noted that ‘repeated
experiences with software
glitches tend to narrow
one’s use of computers to
familiar and routine.
Studies have shown that
most users rely on less
than 10 percent of the
features of common
programs as Microsoft
Word or Netscape
Communicator’” (Barron,
2000).

Section 1 — Introduction to Software Quality and Testing

1-3

This section describes the commonly used software quality
attributes and currently available metrics for measuring software
quality. It also provides an overview of software testing
procedures and describes the impact of inadequate software
testing.

1.1 SOFTWARE QUALITY ATTRIBUTES
Software consumers choose which software product to purchase
by maximizing a profit function that contains several parameters
subject to a budget constraint. One of the parameters in that profit
function is quality. Quality is defined as the bundle of attributes
present in a commodity and, where appropriate, the level of the
attribute for which the consumer holds a positive value.

Defining the attributes of software quality and determining the
metrics to assess the relative value of each attribute are not
formalized processes. Not only is there a lack of commonly
agreed upon definitions of software quality, different users place
different values on each attribute depending on the product’s use.
Compounding the problem is that numerous metrics exist to test
each quality attribute. The different outcome scores for each
metric may not give the same rank orderings of products,
increasing the difficulty of interproduct comparisons.

McCall, Richards, and Walters (1977) first attempted to assess
quality attributes for software. His software quality model focused
on 11 specific attributes. Table 1-1 lists those characteristics and
briefly describes them. McCall, Richards, and Walters’s
characteristics can be divided into three categories: product
operation, product revision, and product transition.

Z Product operation captures how effective the software is at
accomplishing a specific set of tasks. The tasks range
from the ease of inputting data to the ease and reliability of
the output data. Product operation consists of correctness,
reliability, integrity, usability, and efficiency attributes.

Z Product revision measures how easy it is to update,
change, or maintain performance of the software product.
This category is especially important to this analysis
because it is concerned with software testing and the cost
of fixing any bugs that emerge from the testing process.
Maintainability, flexibility, and testability are three
subcharacteristics that fit into this category.

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-4

Table 1-1. McCall, Richards, and Walters’s Software Quality Attributes

Attribute Description

Product Operation

Correctness How well the software performs its required function and meets customers’ needs

Reliability How well the software can be expected to perform its function with required
precision

Integrity How well accidental and intentional attacks on the software can be withstood

Usability How easy it is to learn, operate, prepare input of, and interpret output of the
software

Efficiency Amount of computing resources required by the software to perform its function

Product Revision

Maintainability How easy it is to locate and fix an error in the software

Flexibility How easy it is to change the software

Testability How easy it is to tell if the software performs its intended function

Product Transition

Interoperability How easy it is to integrate one system into another

Reusability How easy it is to use the software or its parts in other applications

Portability How easy it is to move the software from one platform to another

Source: McCall, J., P. Richards, and G. Walters. 1977. Factors in Software Quality, NTIS AD-A049-014, 015, 055.
November.

Z Product transition focuses on software migration. The
three main factors that make up this category are the
software’s ability to interact with other pieces of software,
the frequency with which the software can be used in other
applications, and the ease of using the software on other
platforms. Three subcharacteristics are interoperability,
reusability, and portability.

Following McCall, Richards, and Walters’s work, Boehm (1978)
introduced several additional quality attributes. While the two
models have some different individual attributes, the three
categories—product operation, product revision, and product
transition—are the same.

As software changed and improved and the demands on software
increased, a new set of software quality attributes was needed. In
1991, the International Organization for Standardization (ISO)
adopted ISO 9126 as the standard for software quality (ISO,
1991). The ISO 9126 standard moves from three main attributes
to six and from 11 subcharacteristics to 21. These attributes are

Section 1 — Introduction to Software Quality and Testing

1-5

presented in Table 1-2. The ISO standard is based on
functionality, reliability,

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-6

Table 1-2. ISO Software Quality Attributes

Attributes Subcharacteristics Definition

Functionality Suitability Attributes of software that bear on the presence and
appropriateness of a set of functions for specified tasks

Accurateness Attributes of software that bear on the provision of right or agreed
upon results or effects

Interoperability Attributes of software that bear on its ability to interact with
specified systems

Compliance Attributes of software that make the software adhere to
application-related standards or conventions or regulations in laws
and similar prescriptions

Security Attributes of software that bear on its ability to prevent
unauthorized access, whether accidental or deliberate, to
programs or data

Reliability Maturity Attributes of software that bear on the frequency of failure by
faults in the software

Fault tolerance Attributes of software that bear on its ability to maintain a specified
level of performance in case of software faults or of infringement
of its specified interface

Recoverability Attributes of software that bear on the capability to re-establish its
level of performance and recover the data directly affected in case
of a failure and on the time and effort needed for it

Usability Understandability Attributes of software that bear on the users’ effort for recognizing
the logical concept and its applicability

Learnability Attributes of software that bear on the users’ effort for learning its
application

Operability Attributes of software that bear on the users’ effort for operation
and operation control

Efficiency Time behavior Attributes of software that bear on response and processing times
and on throughput rates in performing its function

Resource behavior Attributes of software that bear on the amount of resources used
and the duration of such use in performing its function

Maintainability Analyzability Attributes of software that bear on the effort needed for diagnosis
of deficiencies or causes of failures or for identification of parts to
be modified

Changeability Attributes of software that bear on the effort needed for
modification, fault removal, or environmental change

Stability Attributes of software that bear on the risk of unexpected effect of
modifications

Testability Attributes of software that bear on the effort needed for validating
the modified software

Section 1 — Introduction to Software Quality and Testing

1-7

(continued)

Table 1-2. ISO Software Quality Attributes (continued)

Attributes Subcharacteristics Definition

Portability Adaptability Attributes of software that bear on the opportunity for its
adaptation to different specified environments without applying
other actions or means than those provided for this purpose for
the software considered

Installability Attributes of software that bear on the effort needed to install the
software in a specified environment

Conformance Attributes of software that make the software adhere to standards
or conventions relating to portability

Replaceability Attributes of software that bear on opportunity and effort using it in
the place of specified other software in the environment of that
software

Source: ISO Standard 9126, 1991.

usability, efficiency, maintainability, and portability. The
paradigms share several similarities; for example, maintainability
in ISO maps fairly closely to product revision in the McCall
paradigm, and product transition maps fairly closely to portability.
There are also significant differences between the McCall and ISO
paradigms. The attributes of product operation under McCall’s
paradigm are specialized in the ISO model and constitute four
major categories rather than just one.

The ISO standard is now widely accepted. Other organizations
that set industry standards (e.g., IEEE) have started to adjust their
standards to comply with the ISO standards.

1.2 SOFTWARE QUALITY METRICS
Although a general set of standards has been agreed upon, the
appropriate metrics to test how well software meets those
standards are still poorly defined. Publications by IEEE (1988,
1996) have presented numerous potential metrics that can be
used to test each attribute. Table 1-3 contains a list of potential
metrics. The problem is that no one metric is able to
unambiguously measure a particular attribute. Different metrics
may give different rank orderings of the same attribute, making
comparisons across products difficult and uncertain.

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-8

Table 1-3. List of Metrics Available

Metric Metric

Fault density Software purity level

Defect density Estimated number of faults remaining (by seeding)

Cumulative failure profile Requirements compliance

Fault-days number Test coverage

Functional or modular test coverage Data or information flow complexity

Cause and effect graphing Reliability growth function

Requirements traceability Residual fault count

Defect indices Failure analysis elapsed time

Error distribution(s) Testing sufficiently

Software maturity index Mean time to failure

Person-hours per major defect detected Failure rate

Number of conflicting requirements Software documentation and source listing

Number of entries and exits per module Rely-required software reliability

Software science measures Software release readiness

Graph-theoretic complexity for architecture Completeness

Cyclomatic complexity Test accuracy

Minimal unit test case determination System performance reliability

Run reliability Independent process reliability

Design structure Combined hardware and software (system) availability

Mean time to discover the next K-faults

The lack of quality metrics leads most companies to simply count
the number of defects that emerge when testing occurs. Few
organizations engage in other advanced testing techniques, such
as forecasting field reliability based on test data and calculating
defect density to benchmark the quality of their product against
others.

This subsection describes the qualities of a good metric, the
difficulty of measuring certain attributes, and criteria for selecting
among metrics.

Section 1 — Introduction to Software Quality and Testing

1-9

1.2.1 What Makes a Good Metric

Several common characteristics emerge when devising metrics to
measure product quality. Although we apply them to software
development, these metrics are not exclusive to software; rather
they are characteristics that all good metrics should have:

Z Simple and computable: Learning the metric and applying
the metric are straightforward and easy tasks.

Z Persuasive: The metrics appear to be measuring the
correct attribute. In other words, they display face validity.

Z Consistent and objective: The results are reproducible.
Z Consistent in units or dimensions: Units should be

interpretable and obvious.
Z Programming language independent: The metrics should

not be based on specific tasks and should be based on the
type of product being tested.

Z Gives feedback: Results from the metrics give useful
information back to the person performing the test
(Pressman, 1992).

1.2.2 What Can be Measured

Regardless of the metric’s quality, certain software attributes are
more amenable to being measured than other attributes. Not
surprisingly, the metrics that are easiest to measure are also the
least important in eliminating the uncertainty the consumer faces
over software quality.

Pressman (1992) describes the attributes that can be measured
reliably and consistently across various types of software
programs:

Z effort, time, and capital spent in each stage of the project;
Z number of functionalities implemented;
Z number and type of errors remediated;
Z number and type of errors not remediated;
Z meeting scheduled deliverables; and
Z specific benchmarks.

Interoperability, reliability, and maintainability are difficult to
measure, but they are important when assessing the overall quality
of the software product. The inability to provide reliable, consistent,
and objective metrics for some of the most important attributes that
a consumer values is a noticeable failure of software metrics.

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-10

1.2.3 Choosing Among Metrics

Determining which metric to choose from the family of available
metrics is a difficult process. No one unique measure exists that a
developer can use or a user can apply to perfectly capture the
concept of quality. For example, a test of the “cyclomatic”
complexity of a piece of software reveals a significant amount of
information about some aspects of the software’s quality, but it
does not reveal every aspect.2 In addition, there is the potential
for measurement error when the metric is applied to a piece of
software. For example, mean time to failure metrics are not
measures of certainty; rather they are measures that create a
distribution of outcomes.

Determining which metric to use is further complicated because
different users have different preferences for software attributes.
Some users care about the complexity of the software; others may
not.

The uncertainty over which metric to use has created a need to
test the validity of each metric. Essentially, a second, observable,
comprehensive and comparable set of metrics is needed to test
and compare across all of the software quality metrics. This
approach helps to reduce the uncertainty consumers face by
giving them better information about how each software product
meets the quality standards they value.

To decide on the appropriate metric, several potential tests of the
validity of each metric are available (IEEE, 1998). For a metric to
be considered reliable, it needs to have a strong association with
the underlying quality construct that it is trying to measure. IEEE
standard 1061-1998 provides five validity measures that software
developers can apply to decide which metrics are most effective at
capturing the latent quality measure:

1. Linear correlation coefficients—Tests how well the
variation in the metrics explains the variations in the
underlying quality factors. This validity test can be used to
determine whether the metric should be used when
measuring or observing a particular quality factor is
difficult.

2Cyclomatic complexity is also referred to as program complexity or McCabe’s

complexity and is intended to be a metric independent of language and
language format (McCabe and Watson, 1994).

Section 1 — Introduction to Software Quality and Testing

1-11

2. Rank correlation coefficients—Provides a second test
for determining whether a particular metric can be used as
a proxy for a quality factor. The advantage of using a rank
order correlation is that it is able to track changes during
the development of a software product and see if those
changes affect software quality. Additionally, rank
correlations can be used to test for consistency across
products or processes.

3. Prediction error—Is used to determine the degree of
accuracy that a metric has when it is assessing the quality
of a particular piece of software.

4. Discriminative power—Tests to see how well a particular
metric is able to separate low quality software components
from high quality software components.

5. Reliability—If a metric is able to meet each of the four
previous validity measures in a predetermined percentage
of tests then the metric is considered reliable.

1.3 SOFTWARE TESTING
Software testing is the process of applying metrics to determine
product quality. Software testing is the dynamic execution of
software and the comparison of the results of that execution
against a set of pre-determined criteria. “Execution” is the
process of running the software on a computer with or without any
form of instrumentation or test control software being present.
“Pre-determined criteria” means that the software’s capabilities are
known prior to its execution. What the software actually does can
then be compared against the anticipated results to judge whether
the software behaved correctly.

The means of software testing is the hardware and/or software
and the procedures for its use, including the executable test suite
used to carry out the testing (NIST, 1997). Section 2 of this report
examines in detail the various forms of software testing, the
common types of software testing being conducted and the
available tools for software testing activities.

In many respects, software testing is an infrastructure technology
or “infratechnology.” Infratechnologies are technical tools,
including scientific and engineering data, measurement and test
methods, and practices and techniques that are widely used in
industry (Tassey, 1997). Software testing infratechnologies
provide the tools needed to measure conformance, performance,
and interoperability during the software development. These tools

In many respects,
software testing is
an infrastructure
technology or
“infratechnology.”

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-12

aid in testing the relative performance of different software
configurations and mitigate the expense of reengineering software
after it is developed and released. Software testing
infratechnologies also provide critical information to the software
user regarding the quality of the software. By increasing quality,
purchase decision costs for software are reduced.

Section 1 — Introduction to Software Quality and Testing

1-13

1.4 THE IMPACT OF INADEQUATE TESTING
Currently, there is a lack of readily available performance metrics,
procedures, and tools to support software testing. If these
infratechnologies were available, the costs of performance
certification programs would decline and the quality of software
would increase. This would lead to not only better testing for
existing products, but also to the testing of products that are not
currently tested.

The impact on the software industry due to lack of robust,
standardized test technology can be grouped into four general
categories:

Z increased failures due to poor quality,
Z increased software development costs,
Z increased time to market due to inefficient testing, and
Z increased market transaction costs.

1.4.1 Failures due to Poor Quality

The most troublesome effect of a lack of standardized test
technology is the increased incidence of avoidable product defects
that emerge after the product has been shipped. As illustrated in
Table 1-4, in the aerospace industry over a billion dollars has been
lost in the last several years that might be attributed to problematic
software. And these costs do not include the recent losses related
to the ill-fated Mars Mission. Large failures tend to be very visible.
They often result in loss of reputation and loss of future business for
the company. Recently legal action has increased when failures are
attributable to insufficient testing.

Table 1-4. Recent Aerospace Losses due to Software Failures

Airbus
A320
(1993)

Ariane 5
Galileo

Poseidon
Flight 965

(1996)

Lewis
Pathfinder
USAF Step

(1997)

Zenit 2 Delta 3
Near

(1998)

DS-1 Orion 3
Galileo Titan

4B
(1999)

Aggregate
cost

$640 million $116.8 million $255 million $1.6 billion

Loss of life 3 160

Loss of data Yes Yes Yes Yes

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-14

Note: These losses do not include those accrued due to recent problems with the Mars Mission.
Source: NASA IV&V Center, Fairmount, West Virginia. 2000.

Software defects are typically classified by type, location
introduced, when found, severity level, frequency, and associated
cost. The individual defects can then be aggregated by cause
according to the following approach:

Z Lack of conformance to standards, where a problem
occurs because the software functions and/or data
representation, translation, or interpretation do not conform
to the procedural process or format specified by a
standard.

Z Lack of interoperability with other products, where a
problem is the result of a software product’s inability to
exchange and share information (interoperate) with
another product.

Z Poor performance, where the application works but not as
well as expected.

1.4.2 Increased Software Development Costs

Historically, the process of identifying and correcting defects during
the software development process represents over half of
development costs. Depending on the accounting methods used,
testing activities account for 30 to 90 percent of labor expended to
produce a working program (Beizer, 1990). Early detection of
defects can greatly reduce costs. Defects can be classified by
where they were found or introduced along the stages of the
software development life cycle, namely, requirements, design,
coding, unit testing, integration testing, system testing,
installation/acceptance testing, and operation and maintenance
phases. Table 1-5 illustrates that the longer a defect stays in the
program, the more costly it becomes to fix it.

1.4.3 Increased Time to Market

The lack of standardized test technology also increases the time
that it takes to bring a product to market. Increased time often
results in lost opportunities. For instance, a late product could
potentially represent a total loss of any chance to gain any
revenue from that product. Lost opportunities can be just as
damaging as post-release product failures. However, they are
notoriously hard to measure. If standardized testing procedures
were readily available, testers would expend less time developing

Section 1 — Introduction to Software Quality and Testing

1-15

custom test technology. Standardized test technology would
accelerate development by decreasing the need to

Table 1-5. Relative Costs to Repair Defects when Found at Different Stages of the Life-Cycle

Life Cycle Stage
Baziuk (1995) Study

Costs to Repair when Found
Boehm (1976) Study

Costs to Repair when Founda

Requirements 1Xb 0.2Y

Design 0.5Y

Coding 1.2Y

Unit Testing

Integration Testing

System Testing 90X 5Y

Installation Testing 90X-440X 15Y

Acceptance Testing 440X

Operation and Maintenance 470X-880Xc

aAssuming cost of repair during requirements is approximately equivalent to cost of repair during analysis in the
Boehm (1976) study.

bAssuming cost to repair during requirements is approximately equivalent to cost of an HW line card return in Baziuk
(1995) study.

cPossibly as high as 2,900X if an engineering change order is required.

Z develop specific test software for each implementation,
Z develop specific test data for each implementation, and
Z use the “trial and error” approach to figuring out how to use

nonstandard automated testing tools.

1.4.4 Increased Market Transaction Costs

Because of the lack of standardized test technology, purchasers
of software incur difficulties in comparing and evaluating systems.
This information problem is so common that manufacturers have
warned purchasers to be cautious when using performance
numbers (supplied by the manufacturer) for comparison and
evaluation purposes. Standardized test technology would
alleviate some of the uncertainty and risk associated with
evaluating software choices for purchase by providing consistent
approaches and metrics for comparison.

2-1

Software Testing2 Methods and Tools

Software testing is the action of carrying out one or more tests,
where a test is a technical operation that determines one or more
characteristics of a given software element or system, according
to a specified procedure. The means of software testing is the
hardware and/or software and the procedures for its use, including
the executable test suite used to carry out the testing (NIST,
1997).

This section examines the various forms of software testing, the
types of software testing, and the available tools for software
testing. It also provides a technical description of the procedures
involved with software testing. The section begins with a brief
history of software development and an overview of the
development process.

2.1 HISTORICAL APPROACH TO SOFTWARE
DEVELOPMENT
The watershed event in the development of the software industry
can be traced to 1969, when the U.S. Justice Department forced
IBM to “unbundle” its software from the related hardware and
required that the firm sell or lease its software products. Prior to
that time, nearly all operating system and applications software
had been developed by hardware manufacturers, dominated by
IBM, or by programmers in the using organizations. Software
developers in the 1950s and 1960s worked independently or in
small teams to tackle specific tasks, resulting in customized one-
of-a-kind products. Since this landmark government action, a

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-2

software development market has emerged, and software
developers and engineers have moved through several
development paradigms (Egan, 1999).

During the 1970s, improvements in computing capabilities caused
firms to expand their use of automated information-processing
tasks, and the importance of programming to firms’ activities
increased substantially. Simple tools to aid software
development, such as programming languages and debugging
tools, were introduced to increase the software programmer’s
productivity. The introduction of the personal computer and its
widespread adoption after 1980 accelerated the demand for
software and programming, rapidly outpacing these productivity
improvements. Semiconductor power, roughly doubling every 18
months, has dramatically outpaced the rate of improvement in
software, creating a “software bottleneck.” Although software is
easily mass-produced, allowing for economies of scale, the
entrenched customized approach to software development was so
strong that economies of scale were never realized.

The historic approach to the software development process, which
focused on system specification and construction, is often based
on the waterfall model (Andersson and Bergstrand, 1995). Figure
2-1 shows how this process separates software development into
several distinct phases with minimal feedback loops. First, the
requirements and problem are analyzed; then systems are
designed to address the problem. Testing occurs in two stages:
the program itself is tested and then how that program works with
other programs is tested. Finally, normal system operation and
maintenance take place. Feedback loops only exist between the
current stage and its antecedent and the following stage. This
model can be used in a component-based world for describing the
separate activities needed in software development. For example,
the requirements and design phase can include identifying
available reusable software.

Feedback loops throughout the entire development process
increase the ability to reuse components. Reuse is the key
attribute in component-based software development (CBSD).
When building a component-based program, developers need to
examine the available products and how they will be integrated
into not only the system they are developing, but also all other

Section 2 — Software Testing Methods and Tools

2-3

potential systems. Feedback loops exist throughout the process
and each step is no longer an isolated event.

Requirements Analysis and
Definition

System and Software Design

Implementation and Unit
Testing

Integration and System
Testing

Operation and Maintenance

Adapted from Andersson and Bergstrand (1995), Table 2-1
illustrates where software developers have placed their efforts

Figure 2-1. Waterfall Model

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-4

through time. In the 1960s and 1970s, software development
focused on writing code and testing specific lines of that code.
Very little effort was spent on determining its fit within a larger
system. Testing was seen as a necessary evil to prove to the final
consumer that the product worked. Andersson and Bergstrand
estimate that 80 percent of the effort put into early software
development was devoted to coding and unit testing. This
percentage has changed over time. Starting in the 1970s,
software developers began to increase their efforts on
requirements analysis and preliminary design, spending
20 percent of their effort in these phases.

Additionally, software developers started to invest more time and
resources in integrating the different pieces of software and
testing the software as a system rather than as independent
entities (units). The amount of effort spent on determining the
developmental requirements of a particular software solution has
increased in importance. Forty percent of the software developer
effort is now spent in the requirements analysis phase.
Developers have also increased the time spent in the design
phase to 30 percent, which

Table 2-1. Allocation of Effort

Requirement
s Analysis

Preliminary
Design

Detailed
Design

Coding and
Unit

Testing
Integration
and Test

Syste
m Test

1960s –
1970s

10% 80% 10%

1980s 20% 60% 20%

1990s 40% 30% 30%

Source: Andersson, M., and J. Bergstrand. 1995. “Formalizing Use Cases with Message Sequence Charts.”
Unpublished Master’s thesis. Lund Institute of Technology, Lund, Sweden.

reflects its importance. Design phases in a CBSD world are
extremely important because these phases determine the
component’s reuse possibilities.

Section 2 — Software Testing Methods and Tools

2-5

2.2 SOFTWARE TESTING INFRASTRUCTURE
Figure 2-2 illustrates the hierarchical structure of software testing
infratechnologies. The structure consists of three levels:

Z software test stages,
Z software testing tools, and
Z standardized software testing technologies.

Software testing is commonly described in terms of a series of
testing stages. Within each testing stage, testing tools are used to
conduct the analysis. Standardized testing technologies such as
standard reference data, reference implementations, test
procedures, and test cases (both manual and automated) provide
the scientific foundation for commercial testing tools.

This hierarchical structure of commercial software-testing
infratechnologies illustrates the foundational role that standardized
software testing technologies play. In the following subsections,
we discuss software testing stages and tools.

2.2.1 Software Testing Stages

Aggregated software testing activities are commonly referred to as
software testing phases or stages (Jones, 1997). A software
testing stage is a process for ensuring that some aspect of a
software product, system, or unit functions properly. The number
of software testing stages employed varies greatly across
companies and

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-6

Figure 2-2. Commercial Software Testing Infrastructure Hierarchy

General
Subroutine

New Function
Regression
Integration

System

Specialized
Stress
Error

Recovery
Security

Performance
Platform

Viral

User-Involved
Usability

Field
Lab

Acceptance

Stages

Procedure
Tests

Automated Scripts

Reference Data
Reference Value

Reference Implementation
Test Suites

Manual Scripts

Standardized Software Testing Technologies

Tools:
• Test Design
• Test Execution and Evaluation
• Accompanying and Support Tools

applications. The number of stages can range from as low as 1 to
as high as 16 (Jones, 1997).

For large software applications, firms typically use a 12-stage
process that can be aggregated into three categories:

Z General testing stages include subroutine testing, unit
testing, new function testing, regression testing,
integration, and system testing.

Z Specialized testing stages consist of stress or capacity
testing, performance testing, platform testing and viral
protection testing.

Z User-involved testing stages incorporate usability testing
and field testing.

After the software is put into operational use, a maintenance
phase begins where enhancements and repairs are made to the
software. During this phase, some or all of the stages of software
testing will be repeated. Many of these stages are common and
well understood by the commercial software industry, but not all

Section 2 — Software Testing Methods and Tools

2-7

companies use the same vocabulary to describe them. Therefore,
as we define each software stage below, we identify other names
by which that stage is known.

General Testing Stages

General testing stages are basic to software testing and occur for
all software (Jones, 1997). The following stages are considered
general software testing stages:3

Z subroutine/unit testing
Z new function testing
Z regression testing
Z integration testing
Z system testing

Specialized Testing Stages

Specialized software testing stages occur less frequently than
general software testing stages and are most common for
software with well-specified criteria. The following stages are
considered specialized software testing stages:

Z stress, capacity, or load testing
Z error-handling/survivability testing
Z recovery testing
Z security testing
Z platform testing stage
Z viral protection testing stage

User-Involved Testing Stages

For many software projects, the users and their information
technology consultants are active participants at various stages
along the software development process, including several stages
of testing. Users generally participate in the following stages.

Z usability testing
Z field or beta testing
Z lab or alpha testing
Z acceptance testing

3All bulleted terms listed in this section are defined in Appendix A.

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-8

2.2.2 Commercial Software Testing Tools

A software testing tool is a vehicle for facilitating the performance
of a testing stage. The combination of testing types and testing
tools enables the testing stage to be performed (Perry, 1995).
Testing, like program development, generates large amounts of
information, necessitates numerous computer executions, and
requires coordination and communication between workers (Perry,
1995). Testing tools can ease the burden of test production, test
execution, test generation, information handling, and
communication. Thus, the proper testing tool increases the
effectiveness and efficiency of the testing process (Perry, 1995).

This section categorizes software testing tools under the following
headings:

Z test design and development tools;
Z execution and evaluation tools; and
Z accompanying and support tools (which includes tools for

planning, reviews, inspections, and test support) (Kit,
1995).

Many of the tools that have similar functions are known by
different names.

Test Design and Development Tools

Test design is the process of detailing the overall test approach
specified in the test plan for software features or combinations of
features and identifying and prioritizing the associated test cases.
Test development is the process of translating the test design into
specific test cases.

Tools used for test design and development are referred to as test
data/case generator tools. As this name implies, test data/case
generator tools are software systems that can be used to
automatically generate test data/cases for test purposes.
Frequently, these generators only require parameters of the data
element values to generate large amounts of test transactions.
Test cases can be generated based on a user-defined format,
such as automatically generating all permutations of a specific,
user-specified input transaction. The following are considered test
data/case generator tools:

Z data dictionary tools

Section 2 — Software Testing Methods and Tools

2-9

Z executable specification tools
Z exhaustive path-based tools
Z volume testing tools
Z requirements-based test design

Test Execution and Evaluation Tools

Test execution and evaluation is the process of executing test
cases and evaluating the results. This includes selecting test
cases for execution, setting up the environment, running the
selected tests, recording the execution activities, analyzing
potential product failures, and measuring the effectiveness of the
effort.

Execution tools primarily are concerned with easing the burden of
running tests. Execution tools typically include the following.

Z capture/playback tools
Z test harnesses and drivers tools
Z memory testing tools
Z instrumentation tools
Z snapshot monitoring tools
Z system log reporting tools
Z coverage analysis tools
Z mapping tools

Simulation tools are also used to test execution. Simulation tools
take the place of software or hardware that interacts with the
software to be tested. Sometimes they are the only practical
method available for certain tests, like when software interfaces
with uncontrollable or unavailable hardware devices. These
include the following tools:

Z disaster testing tools
Z modeling tools
Z symbolic execution tools
Z system exercisers

Accompanying and Support Tools

In addition to the traditional testing tools discussed above,
accompanying and support tools are frequently used as part of the
overall testing effort. In the strict sense, these support tools are

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-10

not considered testing tools because no code is usually being
executed as part of their use. However, these tools are included
in this discussion because many organizations use them as part of
their quality assurance process, which is often intertwined with the
testing process.

Accompanying tools include tools for reviews, walkthroughs, and
inspections of requirements; functional design, internal design,
and code are also available. In addition, there are other support
tools such as project management tools, database management
software, spreadsheet software, and word processors. The latter
tools, although important, are very general in nature and are
implemented through a variety of approaches. We describe some
of the more common testing support tools:

Z code comprehension tools
Z flowchart tools
Z syntax and semantic analysis tools
Z problem management tools

2.3 SOFTWARE TESTING TYPES
Software testing activities can also be classified into three types:

Z Conformance testing activities assess the conformance of
a software product to a set of industry wide standards or
customer specifications.

Z Interoperability testing activities assess the ability of a
software product to interoperate with other software.

Z Performance testing activities assess the performance of a
software product with respect to specified metrics, whose
target values are typically determined internally by the
software developer.

In the following subsections, we define the roles played by each of
the three types of software testing in the software development
process.

2.3.1 Conformance Testing

Conformance testing activities assess whether a software product
meets the requirements of a particular specification or standard.
These standards are in most cases set forth and agreed upon by
a respected consortium or forum of companies within a specific
sector, such as the Institute of Electrical and Electronics

Section 2 — Software Testing Methods and Tools

2-11

Engineers, Inc. (IEEE) or the American National Standards
Institute (ANSI). They reflect a commonly accepted “reference
system,” whose standards recommendations are sufficiently
defined and tested by certifiable test methods. They are used to
evaluate whether the software product implements each of the
specific requirements of the standard or specification.

One of the major benefits of conformance testing is that it
facilitates interoperability between various software products by
confirming that each software product meets an agreed-upon
standard or specification. Because of its broad usefulness,
conformance testing is used in most if not all of the software
testing stages and by both software developers and software
users. Conformance testing methodologies have been developed
for operating system interfaces, computer graphics, document
interchange formats, computer networks, and programming
language processors. Conformance testing methodologies
typically use the same concepts but not always the same
nomenclature (NIST, 1997). Since the specifications in software
standards are complex and often ambiguous, most testing
methodologies use test case scenarios (e.g., abstract test suites,
test assertions, test cases), which themselves must be tested.

Standardization is an important component of conformance
testing. It usually includes developing the functional description
and language specification, creating the testing methodology, and
“testing” the test case scenarios. Executable test codes, the code
that tests the scenarios, have been developed by numerous
organizations, resulting in multiple conformance testing products
on the market. However, many rigorous testing methodology
documents have the capability to measure quality across
products.

Sometimes an executable test code and the particular
hardware/software platform it runs on are accepted as a reference
implementation for conformance testing. Alternatively, a widely
successful commercial software product becomes both the
defacto standard and the reference implementation against which
other commercial products are measured (NIST, 1997).

For router software
development:
Z Conformance testing

verifies that the
routers can accurately
interpret header
information and route
data given standard
ATM specification.

Z Interoperability testing
verifies that routers
from different vendors
operate properly in an
integrated system.

Z Performance testing
measures routers’
efficiency and tests if
they can handle the
required capacity
loading under real or
simulated scenarios.

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-12

2.3.2 Interoperability Testing

Interoperability testing activities, sometimes referred to as
intersystems testing, assess whether a software product will
exchange and share information (interoperate) with other
products. Interoperability testing activities are used to determine
whether the proper pieces of information are correctly passed
between applications. Thus, a major benefit of interoperability
testing is that it can detect interoperability problems between
software products before these products are put into operation.
Because interoperability testing often requires the majority of the
software product to be completed before testing can occur, it is
used primarily during the integration and system testing stages. It
may also be used heavily during beta and specialized testing
stages.

Interoperability testing usually takes one of three approaches.
The first is to test all pairs of products. Consumers are in a poor
position to accomplish this because they are unaware of the
interoperability characteristics across software products and
across software firms. This leads to the second approach—
testing only part of the combinations and assuming the untested
combinations will also interoperate. The third approach is to
establish a reference implementation and test all products against
the reference implementation (NIST, 1997). For example, a
typical procedure used to conduct interoperability testing includes
developing a representative set of test transactions in one
software product for passage to another software product for
processing verification.

Performance Testing

Performance testing activities assess the performance of a
software product with respect to specified metrics. The target
metrics are usually determined within the company using industry
reference values. Performance testing measures how well the
software system executes according to its required response
times, throughput, CPU usage, and other quantified features in
operation by comparing the output of the software being tested to
predetermined corresponding target and reference values.

Performance testing is also commonly known by the other names
and/or associated with other testing activities, such as stress

Throughput, delay,
and load are typical
performance testing
parameters for
large transaction
systems, such as
product data
management
(PDM).

Section 2 — Software Testing Methods and Tools

2-13

testing, capacity testing, load testing, volume testing, and
benchmark testing. These various performance testing activities
all have approximately the same goal: “measuring the software
product under a real or simulated load” (Beizer, 1984).

Performance testing is usually performed as a separate testing
stage, known as the performance testing stage. However, it is not
uncommon for performance testing activities to be conducted as
part of the integration or system testing stage. Typically,
performance testing cannot be performed earlier in the life cycle
because a fully or nearly fully developed software product is
needed. In fact, proper performance testing may require that the
software product be fully installed in a real or simulated
operational environment. As result of its benefits, both users and
developers engage in performance testing. The process is so
valuable that large software developers, users, and system
integrators frequently conduct benchmark comparisons (Michel,
1998).

A major benefit of performance testing is that it is typically
designed specifically for pushing the envelope on system limits
over a long period of time. This form of testing has commonly
been used to uncover unique failures not discovered during
conformance or interoperability tests (Jones, 1997; Perry, 1995;
Wilson, 1995). In addition, benchmarking is typically used to
provide competitive baseline performance comparisons. For
instance, these tests are used to characterize performance prior to
manufacturing as well as to compare performance characteristics
of other software products prior to purchase (Wilson, 1995).

Performance testing procedures provide steps for determining the
ability of software to function “properly,” particularly when near or
beyond the boundaries of its specified capabilities or
requirements. These “boundaries” are usually stated in terms of
the volume of information used. The “specific metrics” are usually
stated in terms of time to complete an operation. Ideally,
performance testing is conducted by running a software element
against standard datasets or scenarios, known as “reference data”
(NIST, 1997).

Performance measures and requirements are quantitative, which
means that they consist of numbers that can be measured and

Z The rate at which the
system processes
transactions is called
the throughput.

Z The time that it takes
to process those
transactions is called
the processing delay.

Z Processing delay is
measured in seconds.

Z The rate at which
transactions are
submitted to a
software product is
called the load.

Z Load is measured in
arriving transactions
per second.

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-14

confirmed by rational experiments. A performance specification
consists of a set of specified numbers that can be reduced to
measured numbers, often in the form of a probability distribution.
The numbers measured for the software product are either less or
more than or equal to the specified values. If less, the software
product fails, if more than or equal to, the software product passes
the tests. Every performance specification is a variation of these
simple ideas (Beizer, 1984).

2.3.4 Relationship between Software Stages, Testing Types, and
Testing Tools

Certain software testing types are associated with particular
software testing stages. During these stages, different types of
testing are performed by different parts of the software industry.
Table 2-2 illustrates the relationship between the software testing
types and stages, while Table 2-3 maps the software testing types
with the software development life cycle. Table 2-3 also indicates
whether developers or end users are likely to conduct the
activities.

Section 2 — Software Testing Methods and Tools

2-15

Table 2-2. The Degree of Usage of the Different Testing Stages with the Various Testing Types

Testing Types
Testing Stages Conformance Interoperability Performance

General
Subroutine/unit H
New function H L
Regression H L
Integration M H M
System M H H

Specialized
Stress/capacity/load
Error-handling/survivability
Recovery
Security H
Performance H
Platform H M
Viral protection H

User-involved
Usability H M L
Field (beta) M H H
Lab (alpha)
Acceptance

Note: H = Heavy, M = Medium, L = Light: These descriptors illustrate the relative use of the testing types during the
various testing stages.

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-16

Ta
bl

e
2-

3.
 S

of
tw

ar
e

Te
st

in
g

Ty
pe

s
As

so
ci

at
ed

 w
ith

 th
e

Li
fe

 C
yc

le

G
en

er
al

Sp
ec

ia
liz

ed
U

se
r I

nv
ol

ve
d

U
ni

t
N

ew
Fu

nc
tio

n
R

eg
re

s
si

on
In

te
gr

a
-ti

on
Sy

st
e

m
St

re
ss

Er
ro

r
R

ec
ov

-
er

y
Se

cu
-

rit
y

Pe
rf

or
m

an
ce

Pl
at

-
fo

rm
Vi

ra
l

U
sa

-
bi

lit
y

Fi
el

d
La

b
Ac

ce
pt

-
an

ce

C
on

fo
rm

an
ce

D
D

D
D

D
D

D
B

U

In
te

ro
pe

ra
bi

lit
y

D
D

B
B

U

Pe
rfo

rm
an

ce
D

D
D

B
B

U

N
ot

e:
 D

 =
 D

ev
el

op
er

s,
 U

 =
 U

se
rs

, B
 =

 B
ot

h.

N
ot

e:
 T

he
 in

fo
rm

at
io

n
in

 T
ab

le
s

2-
2

an
d

2-
3

w
as

 g
at

he
re

d
fro

m
 th

e
lit

er
at

ur
e

an
d

in
fo

rm
al

 in
du

st
ry

 in
te

rv
ie

w
s.

Section 3 — Software Testing Methods and Tools

2-17

Certain software testing tools are also associated with particular
software testing types. In addition, certain tools are also
associated with certain software testing stages. Table 2-4
illustrates the relationship between the software testing tools and
types, and Table 2-5 maps the software testing tools to the
software testing stages.

2.3.5 Standardized Software Testing Technologies

Standardized software testing technologies such as standard
reference data, reference implementations, test procedures,
metrics, measures, test scripts, and test cases (both manual and
automated) provide a scientific foundation for the commercial
testing tools and the testing types used during the software testing
stages.

Although there are general standards for test documentation and
various verification and validation activities and stages
(IEEE/ANSI, 1993), there appears to be a lack of specific
standardized test technology (such as reference data and metrics)
that is readily available for commercial software. The degree of
standardization varies across software applications. In addition,
even when software publishers provide testing tools, they still
require customization and contain inconsistencies because the
development of testing tools lags behind new software product
releases (ITToolbox, 1999).

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-18

Table 2-4. Tools Used by Type of Testing

Test Tools Conformance Interoperability Performance
Test Design and Development

Test data/case generator M L H
Data dictionary
Executable specification
Exhaustive path based
Volume testing tool
Requirements-based test design tool

Execution Evaluation
Execution tools H M H

Capture/playback
Test harness and drivers

Analysis tools H L L
Coverage analysis
Mapping

Evaluation tools L L H
Memory testing
Instrumentation
Snapshot monitoring
System log reporting

Simulation tools M H H
Performance
Disaster testing
Modeling tools
Symbolic execution
System exercisers

Accompanying and Support Tools
Code inspection tools L

Code comprehension
Flowchart
Syntax and semantic analysis

Problem management tools
System control audit database

L L L

Scoring database tools
Configuration management tools H H H

Note: H = Heavy, M = Medium, L = Light: These descriptors illustrate the relative use of the testing tools with the
various testing types.

Section 3 — Software Testing Methods and Tools

2-19

Table 2-5. Tools Used by Testing Stage

Test Tools General Specialty User-Involved
Test Design and Development

Test data/case generator H M L
Data dictionary
Executable specification
Exhaustive path based
Volume testing tool
Requirements-based test design tool

Execution Evaluation
Execution tools H M H

Capture/playback
Test harness and drivers

Analysis tools M M
Coverage analysis
Mapping

Evaluation tools M M M
Memory testing
Instrumentation
Snapshot monitoring
System log reporting

Simulation tools M H M
Performance
Disaster testing
Modeling tools
Symbolic execution
System exercisers

Accompanying and Support Tools
Code inspection tools L

Code comprehension
Flowchart
Syntax and semantic analysis

Problem management tools
System control audit database

H H L

Scoring database tools
Configuration management tools H H L

Note: H = Heavy, M = Medium, L = Light: These descriptors illustrate the relative use of the testing types during the
various testing stages.

Note: The information in Tables 2-4 and 2-5 is based on the literature and comments from industry participants.

3-1

Inadequate
Infrastructure for
Software Testing:
Overview and3 Conceptual Model

An inadequate infrastructure for software testing means that
software developers and users incur costs above levels with more
efficient testing methods. For example, with the current
infrastructure, developers spend extra resources on detecting,
locating, and correcting bugs to produce a given level of product
quality, but more bugs remain in the software to be discovered by
users. Users who encounter bugs incur the costs associated with
the reduced quality of the activities supported by the software and
the costs of developing “workarounds” to deal with the bug or of
returning the software to the developer for correction.

Because bugs negatively affect perceived product quality, they
can also be expected to negatively impact software sales. For
example, bugs present in early (beta) versions of software
releases increase the cost for early adopters, slowing the diffusion
of new software products. Decreased software sales reduce
developers’ revenues and mean that some potential users forego
the benefits of new releases. Furthermore, such delays may
mean that a firm or country will lose the early-mover advantage.
When an entity is the first to introduce a product that changes the
competitive position of the market, being first may give it an
advantageous position for some time.

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-2

3.1 SOFTWARE TESTING INADEQUACIES
General standards for test documentation and various verification
and validation activities and stages have been available for
several years (IEEE/ANSI, 1993). Organizations such as the
Carnegie Mellon Software Engineering Institute have promoted de
facto standards for assessing and improving software processes.4

Carnegie Mellon is also managing the Sustainable Computing
Consortium that is investigating standards and methods to reduce
software defects (InformationWeek.com, 2002). However, a
specific standardized test technology (such as reference data and
metrics) that is readily available for commercial software appears
to be lacking. Even when the software publisher provides testing
tools, they still require customization and contain inconsistencies
because development of testing tools lags behind new software
product releases (ITToolbox, 1999).

Compounding this problem are competitive market pressures that
have increased automation in business and manufacturing,
increasing the amount of information that is shared between
applications within and among companies. These forces are
simultaneously pushing the complexity, reliability, interoperability,
performance, and “speed of deployment” requirements of
software. However, these forces have led several inadequacies in
software testing infrastructure technology to emerge and become
problematic for the software industry. For the discussion below,
inadequacies are grouped into four categories:

Z integration and interoperability testing issues,
Z automated generation of test code,
Z lack of a rigorous method for determining when a product

is good enough to release, and
Z lack of readily available performance metrics and testing

measuring procedures.

3.1.1 Integration and Interoperability Testing Issues

Initiatives such as real-time integrated supply chain management
are driving the need to integrate PDM and computer-aided design
(CAD), computer-aided manufacturing (CAM), and computer-

4See Carnegie Mellon Software Engineering Institute’s Capability Maturity Model

for Software (SW-CMM), <http://www.sei.cmu.edu/cmm/>. Last modified
April 24, 2002.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-3

aided engineering (CAE) with other systems that are part of the
extended organization and supply chain. The integration of
applications is a difficult and uncertain process. Meta Group
estimates that application integration can account for up to one-
third of the cost of systems implementation (Booker, 1999).
Enterprise applications integration (EAI) is currently a huge
expense, occupying 30 percent of company information
technology budgets. Its importance is expected to increase in the
future when it could occupy up to 56 percent of company
information technology budgets (Booker, 1999). Estimated
worldwide information technology expenditures were $270 billion
in 1998. Given that 30 percent of the expenditures were on EAI,
this translates to total expenditures of $81 billion in 1998.

Developers rely heavily on interoperability testing during the
integration testing stage. One of the major inadequacies within
the software-testing infrastructure is the difficulty in determining
whether applications and systems will interoperate. For example,
if application A and application B interoperate and if application B
and application C interoperate, what are the prospects of
applications A and C interoperating (NIST, 1997)?

3.1.2 Automated Generation of Test Code

Developing conformance testing code can be more time consuming
and expensive than developing the standard or product that will be
tested. Addressing the high testing costs is currently the focus of
several research initiatives in industry and academia. Some of
these initiatives are based on modeling finite state machines,
combinatorial logic, or other formal languages such as Z (Cohen et
al., 1996; Tai and Carver, 1995; NIST, 1997; Apfelbaum and Doyle,
1997). NIST has also been involved in developing formal methods
for automatically generating tests for software products from formal
specifications (Black, 2002; Gallagher, 1999).

3.1.3 Lack of a Rigorous Method for Determining When a Product Is
Good Enough to Release

The major problem for the software industry is deciding when a firm
should stop testing (Vouk, 1992; Voas and Friedman, 1995; Voas,
1998; Rivers and Vouk, 1998; Offlutt and Jeffery, 1997; NIST,
1997). In other words, how much testing is enough, or when is the

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-4

quality “sufficient” for the product to be released. A more rigorous
definition of the certainty of software quality is needed. The problem
is exacerbated because there is disagreement not only on how to
define enough, but also on what tests should be run to determine
what is enough. For example, commercial software developers use
a combination of the following nonanalytical methods to decide
when a software element is “good enough” to release:

Z A “sufficient” percentage of test cases run successfully.
Z Developers execute a test suite while running a code

coverage analyzer to gather statistics about what code has
been exercised.

Z Defects are classified into different severity categories and
numbers and trends within each category are analyzed.

Z Beta testing is conducted, allowing real users to run a
product for a certain period of time and report problems;
then developers analyze the severity and trends for
reported problems.

Z Developers analyze the number of reported problems in a
period of time; when the number stabilizes or is below a
certain threshold for a period of time, it is considered “good
enough.”

Although code coverage and trend analysis are initial steps
towards a more rigorous definition of the certainty of software
quality, mathematical foundations and methods for assessing the
uncertainty in quality determinations still need to be defined.
Analytically derived levels of confidence for software test results
would give software developers and users a more consistent
method of determining and comparing their estimates of the risk of
deploying software products.

3.1.4 Lack of Readily Available Performance Metrics and Testing
Procedures

The larger software developers provide performance testing
certification programs as well as performance benchmark metrics
(Michel, 1998). However, performance-testing programs are
expensive to develop and maintain and too costly for smaller
software developers (Michel, 1998). Typically, hardware platform
developers only conduct performance testing for the more popular
or largest software systems. Small, new, or less popular systems
often have no performance testing done by either the software or
hardware developer.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-5

Currently, there is a lack of readily available performance metrics
or testing procedures. If these metrics and procedures were
available, the costs of performance certification programs would
decline. This would lead to not only better testing for existing
products, but also to the testing of products that are not currently
tested.

3.1.5 Approaches for Improving Software Testing Infrastructure

Numerous issues affect the software testing infrastructure and
may lead to inadequacies. For example, competitive market
pressures may encourage the use of a less than optimal amount
of time, resources, and training for the testing function (Rivers and
Vouk, 1998). Improvements in standardized test technology can
provide cascading improvements throughout the entire software
testing infrastructure and as a result provide improvements
throughout the software industry. As illustrated in Figure 2-2
standardized software testing technologies are the foundation of
the entire software testing infrastructure, which in turn supports
the software industry.

There is a great need for certified standardized test technology.
For example, some software publishers provide test tools.
However, the development of these tools and the accompanying
testing suites often lag behind the development of new software
applications (ITToolbox, 1999). Even when commercial testing
tools are available, testers complain that many of these tools are
confusing and potentially harmful to the firm that uses them
(ITToolbox, 1999). Standardized testing tools, suites, scripts,
reference data, reference implementations, and metrics that have
undergone a rigorous certification process would have a large
impact on the inadequacies listed in the previous section. For
instance, integration issues could be reduced if standard test
suites could give a certain level of confidence that if products A, B,
and C pass these tests, then these products will interoperate with
each other. Another example would be the availability of
standardized test data, metrics, and automated test suites for
performance testing. This would make benchmarking tests on
less popular applications less costly to perform. Standardized
automated testing scripts along with standard metrics would also

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-6

provide a more consistent method for determining when to stop
testing.

One of the main objectives of this study is to identify approaches
to improve the software testing infrastructure. Based on findings
from our surveys and case studies, this subsection will be
expanded.

3.2 CONCEPTUAL ECONOMIC MODEL
The cost of an inadequate infrastructure for software testing can
also be expressed as the benefit of an improved infrastructure for
software testing. These values (cost and benefit) are symmetrical.
They are properly measured as either the minimum amount of
money all members of society would collectively require to forego
the improved infrastructure or as the maximum amount of money
all members of society would collectively pay for the improved
infrastructure.

An appropriate measure of the economic impact of an inadequate
infrastructure for software testing is the profit differences of
developers and users between conditions with the current testing
infrastructure and conditions with the counterfactual infrastructure.
This can be expressed by summing over all developers and users
as follows:

∆ economic welfare = Σ ∆ developers’ profits +

Σ ∆ end-users’ profits.

An improved testing infrastructure could have several potential
impacts on software developers and end users. Understanding
the mechanism through which costs are incurred (or benefits
foregone) is an important first step in developing a cost taxonomy
(presented in Section 4) for estimating the economic impact of the
failure to achieve these improvements.

To model these impacts, we set up representative firms’ profit
functions for developers and end users under the current and
counterfactual conditions and investigated how changes in the
software testing infrastructure affect firms’ costs and revenues. In
addition, we are interested in the software developer’s selection of
the “optimal” level of software testing resources dedicated to

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-7

achieving software quality. The empirical analysis in Sections 6
through 8 investigates not only a testing infrastructure’s cost
impact associated with achieving a given level of quality, but also
its impact on the level of quality embedded in software products,
which is influenced by the market.

3.3 SOFTWARE DEVELOPERS
In this section, we define the software developer’s profit function in
terms of sales revenue, pre-sale software R&D expenditures,
production costs, marketing, and after-sales service costs. We
also graphically illustrate the developers’ selection of the profit-
maximizing level of R&D expenditures and show how this level is
affected by an inadequate testing infrastructure.

3.3.1 Cost Framework

The appropriate measure of the value developers would place on
an improved infrastructure for software testing is their profit
difference between conditions with the current testing
infrastructure and conditions with the counterfactual infrastructure
(see Just, Hueth, and Schmitz [1982]).

Profits are firm revenues minus costs. Suppose the firm produces
a single software product (q) at a price (p). Total revenues are

TR = pq

Taking a product life-cycle perspective (but ignoring the timing of
activities to simplify the notation), costs are of two types: R&D
and production. R&D costs are the one-time fixed costs of
product development including testing activities. Production costs
are the recurring costs of product production, distribution, and
service.

Suppose the developer uses n inputs or resources (x11, …, x1n) in
the R&D phase of software development and that the prices for
the resources are w11, …, w1n. The cost of R&D effort expended
to develop and test the product is

Error!w1ix1i.

The cost of production (i.e., of all activities after the successful
development of the software) includes both the production,

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-8

marketing, and distribution costs and the costs of dealing with
user-identified bugs. Suppose the developer uses r resources
(x11, …, x1r) per product sold in software production and
distribution and s resources (x21, …, x2s) per product sold in after-
sales service dealing with user-identified bugs. Developers’
production and distribution/service costs are

qxwxw
s

1i
i3i3

r

1i
i2i2 













+ ∑∑

==
. (3.1)

The total costs over the product life-cycle of developing and
producing the software are the sum of the R&D and production,
and distribution/service costs:

qxwxwxw
s

1i
i3i3

r

1i
i2i2

n

1i
i1i1 













+ ∑∑∑

===
. (3.2)

The profit, π, the developer receives over the entire product life-
cycle is


























+−=π ∑∑∑

===
qxwxwxwpq

s

1i
i3i3

r

1i
i2i2

n

1i
i1i1 (3.3)

where the first term is the revenues, the second, costs.

With improvements in testing infrastructure, resource use in the
R&D phase (x11, …, x1n) will change. Fewer bugs will be
embodied in shipped products; thus, resource use for after-sales
service (x31, …, x3s) will also change. With improvements in
product quality demand may increase, increasing sales of the
software products (q) and thereby changing the resource use in
software production and distribution (x1, …, xr). Because
developers are producing a (better) unique product and because
production costs will change, product prices (p) will also change.

Profit, π‘, under the counterfactual condition will be (where the
prime symbol is used to indicate changed values for the
variables):
















 ′′+′′+′′−′′=π′ ∑∑∑
===

qxwxwxwqp
s

i
ii

r

i
ii

n

i
ii

1
33

1
22

1
11 . (3.4)

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-9

Thus, the benefit of an improved software testing infrastructure to
a developer is the developer’s profit difference: π‘ – π.
Alternatively, this profit difference can be viewed as the cost to the
developer of failing to provide the improved infrastructure.
Regardless of the perspective, the value can be thought of as
having two components: the difference in the R&D and production
costs plus the difference in the revenues received. The industry-
level values are the sum of the firm-level profit differences for all
firms in the industry.

3.3.2 Factors Influencing the Profit-Maximizing Level of R&D
Expenditures

Product quality is an integrating factor underlying the firm’s R&D
expenditure decision, after-sales service costs, and revenue from
the sale of software products. This subsection models R&D
expenditures on software testing as an endogenous variable in the
developer’s profit-maximizing decision and investigates the
developer’s decision criteria for determining the level of quality it
will provide in its products. The level of quality is modeled as a
function of the R&D resources developers invest prior to shipping
a software product. We present our model in terms of a shrink-
wrapped product. However, it could be easily extended to custom
software development by replacing the quality decision maximized
at the time of shipping for a shrink-wrapped product with the
quality decision maximized at the time of acceptance for a custom
software product.

Consider a software developer who is maximizing profits
(represented by Eq. [3.3]) with respect to the level of R&D
expenditures it will devote to product quality. The developer
would prefer to maximize with respect to product quality; however,
product quality is an unobservable attribute at the time of shipping.
Thus, what the developer selects is the level of testing resources
invested to produce a target level of quality. The software quality
(Q) production function can be expressed as a function of R&D
expenditures (i.e., labor and capital to support testing) (Σx1i)
invested prior to shipping plus an error term (e):

Q = f(Σx1i) + e (3.5)

where f’ > 0 and f’’ < 0.

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-10

The level of quality can be thought of as the inverse in the number
of bugs remaining in the product including its level of
interoperability with complementary products or legacy systems.

As shown in Figure 3-1, software quality potentially affects
developers’ profits through changes in

Profit = Revenue – [Testing + Production + After-Sales Service]


























++−=π ∑∑∑

===
qxwxwxwpq

s

i
ii

r

i
ii

n

i
ii

1
33

1
22

1
11

Q = f(Σx1i) + e

Z after-sales service costs,
Z the market price of the software, and
Z the quantity sold.

The exact relationships determining the impact of quality on these
three profit components depend on a variety of factors. For
example, the extent to which quality affects developers’ after-sales
service costs depends on the type of service agreements
established between developers and end users. Also, the extent
to which quality influences market price and quantity depends on
end-users’ ability to evaluate software quality and on the search
costs they are willing to expend to obtain information on quality.

After-Sales Service Costs
We begin evaluating software developers’ R&D expenditure
decision by investigating the tradeoff between pre-sales testing
and after-sales service costs (i.e., holding price and quantity of the
software product constant—this assumption is relaxed in the
following section). The profit-maximizing software developer will
continue to invest in software testing as long as the marginal cost
of obtaining an additional unit of quality is less than the marginal

Figure 3-1. Software Quality’s
Role in Profit Maximization
Software quality not only
affects price (p) and quantity
(q), but also the resources per
unit sold (x3i) needed, for after-
sales service.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-11

benefit of the additional unit of quality.5 As shown in Figure 3-2a,
the marginal cost of pre-sales quality increases exponentially and
the marginal benefit of avoided after-sales service is represented
as

Figure 3-2. Minimize Joint Costs of Pre-sales Testing and After-Sales Service (Holding Price and Quantity Constant)

Marginal
Cost
(MC)

Marginal
Benefit

(MB)

"Quality Gap"

Share of After-Sales
Costs borne by End

Users

MC Testing
Prior to

Shipping

MB1

Q1 Quality

MB* of
Avoided After-
Sales Service

Q*

Developer's
Profits

π1

Quality

π*

(b)

(a)

5The MC curve represents the distribution of costs for a given level of testing

technology. Additional testing resources move a developer along the curve.
An improved testing infrastructure will shift the MC curve down.

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-12

flat. The flat marginal benefits curve reflects a constant avoided
after-sales service cost per unit of quality.6

If the developer bears all the after-sales service costs (or if the
developer and end user are the same entity such as in-house
software development), as shown by MB*, the optimal level of
quality is Q*. Q* also reflects the optimal social level of software
quality. However, if the developer only bears part of the after-
sales costs, the MB of quality to the developer is less. As a result,
the developer will select a quality level of less than Q*, yielding a
“quality gap” of (Q* – Q1).

As shown in Figure 3-2b, the quality gap reflects instances where
profit-maximizing software developers do not have the proper
incentives to invest testing resources to achieve the socially
optimal level of software testing. The quality gap illustrates that
the greater the market power of developers, the more costs are
shifted toward users, lowering developers’ incentives to invest in
quality.

3.4 END USERS
End users complete the market for software products. They
influence R&D testing efforts through the share of after-sales
costs they bear and through their valuation of perceived software
quality. Restated, the end-users’ ability to observe software
quality at the time of purchase and the contractual agreements
determining who bears the after-sales costs of poor quality
influence end-users’ demand for software quality.

3.4.1 Cost Framework

As with software developers, the appropriate measure of the value
end users would place on an improved infrastructure for software
testing is their profit difference between conditions with the current
testing infrastructure and conditions with the counterfactual
infrastructure.

6It is unclear if bugs found after a “large” amount of testing has already been

done are more costly or less costly to fix. Thus, we assume a flat MB curve,
implying that the average cost per after-sales bug is constant with respect to
the level of quality.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-13

End-users’ profits are modeled as a function of the difference in
revenues and production costs. End-users’ total revenues are
expressed as the price times quality for the product the firm
produces:

TR = py.

The key inputs to end-users’ production functions are divided into
four components: pre-purchase software costs, software
expenditures, after-purchase software costs, and “other”
nonsoftware-related costs incurred by the end user. As with
software developers, costs are viewed from a product life-cycle
perspective (but again ignoring the timing of activities to simplify
the notation).

Suppose the end user expends n inputs or resources (x11, …, x1n)
prior to purchasing software and that the prices for the resources
are w11, …, w1n. These costs may include, for example, search
costs or delay costs from uncertainty over the quality of available
software.

End users will then purchase up to r software products (x21, …,
x2r) at market prices (w21, …, w2r). Purchase costs are one-time
fixed costs covering software and implementation expenditures.

In addition to the purchase cost of the software, end users may
experience after-purchase (after-acceptance) costs comprising
resources (x31, …, x3s) at prices (w31, …, w3s). After-purchase
costs include activities, such as implementing patches and work
arounds, idle labor, and capital resources due to software
problems. Note that resources x1, x2, and x3 are modeled as
fixed, one-time expenditures.

Finally, end-user “other” production costs are included for
completeness to capture all nonsoftware-related activities per unit
produced. Other production costs are represented as V resources
(x41, …, x4v) at a price of (w41, …, w4v), times y units produced.

The end-user’s profit, π, can be expressed as its product life-cycle
revenue minus its costs:














+++−=π ∑∑∑∑

====
yxwxwxwxwpy

v

1i
i4i4

s

1i
i3i3

r

1i
i2i2

n

1i
i1i1 (3.6)

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-14

where the first term is revenues, the remaining terms are costs.

With improvements in testing infrastructure, resource use in the
pre-purchase, purchase, and post-purchase phases of the
software’s life-cycle will change. For example, certified testing
procedures may facilitate the comparison of products across
different software vendors, lowering search costs. Fewer bugs
embodied in software products reduces after-sales purchase costs
for end users. Finally, because better software may lead to better
final products, the demand for the end-user’s final products may
increase, leading to changes in final product prices and quantities.

Profit, π‘, under the counterfactual condition will be














+′′+′′+′′−′′=π′ ∑∑∑∑

====
yxwxwxwxwyp

v

1i
i4i4

s

1i
i3i3

r

1i
i2i2

n

1i
i1i1 (3.7)

Thus, the benefit of an improved software testing infrastructure to
a end user is the change in profit: π‘ – π.

3.5 THE MARKET FOR SOFTWARE PRODUCTS
In this section we build on the insights from the developers’ and
end-users’ profit-maximizing behavior to model the market for
software products. We illustrate the determination of market price
and quantity, along with consumer and producer surplus,
assuming under a market structure of monopolistic competition.
Section 3.6 then shows the impact of an inadequate infrastructure
for software testing on prices, quantities, and economic welfare.

3.5.1 Quality’s Impact on Market Prices

If end users bear some share of the cost associated with the lack of
software quality, this will influence the price (P) they are willing to
pay for the product and the quantity purchased (q). To model the
impact we assume that developers are maximizing profits with
respect to selecting the level of pre-sale testing resources they will
invest. In addition, we make the following modeling assumptions:

Z Developers’ R&D expenditures, including software testing
costs, are one-time fixed costs.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-15

Z After-sales service costs are variable costs and are a
function of q (distribution of patches and customer service
operations).

Z End-user demand is a function of quality (Q).

The distinction between fixed and variable costs is important in the
software industry because the physical production of software
products has close to zero marginal costs. In our model, per unit
after-sales support is the primary variable cost and for simplicity is
assumed to be constant with respect to the quantity produced.7

Figure 3-3 illustrates the marginal benefits to users (referred to as
the demand curve) and marginal cost as a function of the number
of units sold (q) and shows how these curves shift as software
quality changes. In a market with monopolistic competition,
software developers will price their products where MR = MC. As
quality improves, the software products’ value to end users
increases, shifting out both the demand and marginal revenue
curves. Increased quality also decreases the marginal cost of
after-sales services, leading to a downward shift in the MC curve.
The new intersection of the MC and marginal revenue (MR)
curves results in increased price and quantity and increased net
revenue for the developer.

The profit-maximizing software developer will invest in product
quality as long as the increased net revenue (change in total
revenue [∆TR] minus change in total variable cost [∆TVC]), shown
in Figure 3-3, is greater than the increased fixed costs (∆FC). It
can be shown that the profit-maximizing level of R&D
expenditures for the developer is where the marginal change in
net revenue with respect to testing is equal to the marginal change
in fixed costs.

∂(TR – TVC) / ∂Σx1i = ∂FC / ∂Σx1i. (3.8)

As mentioned earlier, key factors influencing the initial position of
the curves in Figure 3-3 and the way they shift in response to
changes in software quality are

7There are likely to be some economies of scale in providing after-sales support;

for example, maintaining service centers and developing and distributing
patches will have decreasing per-unit costs. However, the more end users
using a piece of software, the higher the probability a bug will be found or an
interoperability problem will materialize. Relaxing the assumption of constant
MC of after-sales service would add decreasing slope to the MC curve in
Figure 3-3 but would not affect the analysis findings.

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-16

Z the share of after-sales costs borne by end users (this
influences the initial demand and MC curves and how they
respond to changes in quality), and

Z end-users’ ability to determine the level of quality prior to
purchasing the product (this influences the initial demand
curve and its responsiveness to changes in quality).

These factors are discussed in the following subsection.

3.6 MODELING AN INADEQUATE SOFTWARE TESTING
INFRASTRUCTURE
Inadequate software testing infrastructure affects both developers’
and end-users’ profit functions and hence affects their supply and
demand for software quality, respectively. Enhanced testing tools
and services will enable users to find bugs faster and fix them with
fewer resources and allow users to better assess the quality of

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-17

Quality ↑

 (TR − TVC)0

Quantityq0

MR0 D0

MC0

Q↑

Q↑

Q↑

 (TR − TVC)

Quantityq′

MR′

D′

MC′

P0

MC, MB

MC, MB

P′

a)

b)

software products. This in turn will affect developers’ and end-
users’ behavior by changing the following underlying relationships
embedded in the profit functions:

Z cost of quality (prior to shipping),
Z cost of after-sales service, and
Z search costs for end users to determine quality.

Figure 3-3. Change in
Quality’s Impact on Price,
Quantity, and Net Revenue

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-18

The impact of these three items on developer and end-user’
profits, software quality, and economic welfare is described below.

3.6.1 Inadequate Infrastructure’s Impact on the Cost of Quality

Improved software tools could decrease the testing resources
needed to achieve a given level of quality. In effect an improved
infrastructure would make R&D resources more productive and,
as shown in Figure 3-4, shift the MC of testing prior to shipping
down to the right closer to the asymptote of maximum quality
(Qmax, i.e., no bugs in shipped software products). If f1 represents
the relationship between R&D resources and quality (as shown in
Eq. [3.5]) with an inadequate infrastructure and f2 represents the
relationship with an improved infrastructure, then

f1(Σx1i) < f2(Σx1i).

In terms of the cost minimization analysis illustrated in Figure 3-2,
an improved testing infrastructure would decrease the MC of
quality and increase the socially optimum and market level of
quality (see Figure 3-4). In addition, an improved testing
infrastructure might also narrow the “quality gap” by altering the
shape of the MC testing function. For example, as the MC curve
moves closer to the asymptote of “perfect” quality (i.e., no bugs)
the MC curve may become steeper, leading to a smaller quality
gap.

In terms of the profit-maximizing developer shown in Figure 3-3,
increased pre-sales quality due to enhanced testing tools will lead
to decreased after-sales resources needed to fix bugs and
develop and implement patches and will lead to increased
demand for the higher quality software products.

The overall impact on the level of R&D expenditures, however, is
ambiguous. The shift in the quality function (Eq. [3.5]) means that
fewer resources are required to achieve a target level of quality.
But the lower cost of quality increases the demand for quality.
The final change in R&D resources will depend greatly on who
bears the costs of poor quality and end-users’ ability to evaluate
the quality of software products at the time of purchase.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-19

Figure 3-4. Enhanced Testing Tool’s Impact on the Marginal Cost of Quality

Marginal Cost
(MC)

Marginal Benefit
(MB)

f1

Quality
Gap1

Quality

f2

Quality
Gap2

Share of After-Sales
Costs Borne by End

Users
MB

MB

Qmax

3.6.2 Inadequate Infrastructure’s Impact on the Cost of After-Sales
Service

As mentioned above, fewer bugs lead to fewer resources required
for after-sales service. In addition, an inadequate infrastructure
also affects the cost of detecting and correcting bugs that are
present in software after it is sold. By enhancing testing tools to
detect and correct after-sales bugs and interoperability problems,
the cost of after-sales service is lowered, leading to economic
benefits to society.

However, a counterintuitive effect of increasing the efficiency of
after-sales services is that it could reduce the incentive for
developers to build quality into their products. If it is less costly to
fix errors after sales, then other factors, such as time-to-market,
may dominate the quality determination. This in part may explain
why software products have a lower quality compared to other
consumer products such as appliances or automobiles. The cost
of developing a software “patch” and distributing it to customers is
relatively low for developers. Developers frequently e-mail

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-20

patches out to customers at virtually zero marginal cost and the
cost of installing the patch falls on the customers. In contrast,
manufacturers of appliances or automobiles can incur significant
per unit costs if their products need to be recalled to correct a
defect.

3.6.3 Inadequate Infrastructure’s Impact on End-Users’ Demand

Changes in software quality will affect end-users’ demand
functions only if end users are able to observe the changes in
quality at the time of sales.8 An improved software testing
infrastructure may include certification tests and metrics that would
enable end users to compare quality across different venders’
products. These certification tests would increase the
responsiveness (elasticity) of end-users’ demand to changes in
software quality. Increasing the responsiveness of the end-users’
demand curve provides greater incentive for software developers
to improve pre-sales quality through increased R&D resources.

3.6.4 Aggregate Impact

In every instance, an inadequate infrastructure for software testing
leads to reductions in economic welfare as reflected in the
combined profits of developers and end users. The magnitude
and distribution of impacts between developers and end users
depends on the underlying relationships in the R&D quality
function, after-sales debugging function, and end-users’ demand
function.

The impact of an inadequate infrastructure on the level of quality
provided by the market is less certain. In some instances
enhanced testing and certification tools increase the optimal and
market levels of software, such as in the cases of their impact on
the R&D quality function and end-user demand function. On the
other hand, after-sales testing tools lead to decreased levels of
software quality at the time of sale.

8Because, for simplicity, we have not incorporated time in our model, at this point

we are not including reputational impacts from repeat buyers or word of
mouth recommendations. It is true that the discovery of bugs and
interoperability problems after sales do affect end-users’ perception of
software quality and hence demand. However, for this discussion we are
focusing on infrastructure technology that provides information or quality at
the time of purchase or acceptance.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-21

3.7 THE TIME DIMENSION
Because an inadequate software testing infrastructure delays
when a new product can be introduced into the market, it
decreases the probability of a supplier capturing the early-mover
advantage. This can affect the timing and distribution of profits.

The early-mover advantage is found in the superior profit position
of the early mover compared to his position if he were not the
early mover. The primacy of this position may be due to the
following (Besanko, Dranove, and Shanley, 1996):

Z Economies of learning give the innovator a cost
advantage.

Z Network externalities make a product more valuable as the
number of consumers adopting the product increases.
This may lead to a competitive advantage for the
innovator.

Z Reputation and buyer uncertainty over the expected
performance of goods, especially experience goods, give
the established supplier a competitive advantage.

Z Buyer switching costs arise when product-specific
knowledge is not fully transferable to new products, making
it difficult for new suppliers to effectively compete with
established suppliers. This is also referred to as “lock-in”
or “installed-base” effects.

Although the specific magnitude of benefits from the early-mover
advantage is conditional on the specific context, the general
consensus in the economics and strategy literature is that firms
that move first and are able to establish a standard have the
opportunity to economically benefit from their initiatives. In recent
literature on the early-mover advantage, Robinson, Kalyanaram,
and Urban (1994) find that firms first to market can develop
advantages that can last for decades. Although the benefits vary
across types of industry, the empirical evidence supports the
belief that an early-mover advantage is greatest when brand name
recognition for experience goods is involved.

The literature does not, however, unambiguously find a
competitive advantage for early movers. The highest risk for the
early mover is the risk of backing the wrong technology or product.

In addition, whereas early-mover advantage is of great interest to
individual firms, it is primarily an issue of redistribution of sales.

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-22

This can be important for U.S. market share, if U.S. companies
adopt enhanced testing tools earlier than foreign competitors.
However, if worldwide software developers all adopt enhanced
testing tools together, then the primary benefit to the U.S.
economy is the accelerated availability of higher quality products
and not an early-mover advantage.

3.8 CONCLUSION
Software testing infrastructure influences developers’ and end-
users’ costs and hence the level of software quality provided in the
market.

Section 4 develops the resource cost taxonomy for developers
and end users to inform the collection of the data needed to
estimate the changes in the profits with an improved
infrastructure. The cost taxonomy is built on the determinants of
economic welfare described in this section.

∆ economic welfare = Σ ∆ developers’ profits +

Σ ∆ end-users’ profits

where

∆ developers’ profits = ∆ software revenues – ∆ R&D

costs – ∆ software production

costs

– ∆ after-sales costs
and

∆ end-users’ profits = ∆ revenues

– ∆ pre-purchase software costs

– ∆ software expenditures

– ∆ post-purchase software costs

– ∆ nonsoftware production costs.

But since

∆ software revenues = ∆ software expenditures,

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-23

and we assume no change in developers’ software production
costs or end-users’ revenues and nonsoftware production costs,
then

∆ economic welfare = Σ [∆ developers’ R&D costs

+ ∆ developers’ after-sales

costs]

+ Σ [∆ end users’ pre-purchase

 software costs

+ ∆ end-users’ post-purchase

 software costs].

Technical and economic impact metrics for the components of
economic welfare are defined in Sections 4 and 5.

4-1

Taxonomy for
Software Testing4 Costs

Section 3 shows conceptually that an inadequate infrastructure for
software testing affects the resources consumed by software
developers to produce their products and the resources consumed
by users to integrate and operate software in their business
operations. This section provides a taxonomy to describe the
resources employed by software developers and users that are
linked to software testing activities.

This section begins with a general discussion of the principles that
drive software testing objectives. This discussion is followed by a
taxonomy for measuring the labor and capital resources used by
software developers to support software testing and by a
taxonomy for the impact of errors (bugs) on users of software
products.

Section 5 builds on this taxonomy and describes our approach for
estimating how an inadequate infrastructure for software testing
affects these resources.

4.1 PRINCIPLES THAT DRIVE SOFTWARE TESTING
OBJECTIVES
Any code, no matter how accomplished the programmers, will
have some bugs. Some bugs will be detected and removed
during unit programming. Others will be found and removed
during formal testing as units are combined into components and
components into systems. However, all developers release

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-2

products knowing that bugs still remain in the software and that
some of them will have to be remedied later.

Determining the appropriate level of software testing is a
subjective process. An infinite amount of testing will not prove the
negative: that a bug is not in the software (see Myers [1979]). In
addition, the more one tests software for bugs the more likely one
is to find a bug (Beizer, 1990), and the number of feasible tests for
a complex program is virtually infinite.

If the primary reason why software is shipped with bugs is that it is
impossible not to do so, the secondary reason is that it is seldom
economically efficient to remove all bugs even if it were feasible.
As shown in Section 3, testing consumes resources and, while it
improves product quality, the efficient level of quality may well be
short of perfection because, as the number of tests approaches
infinity, the time and resource costs of such thorough testing
would also become infinite. Thus, developers must identify the
risk they are willing to accept and use it to identify when the
product is good enough to ship (see Beizer [1990]).

Identifying when the product is good enough is especially
important in very competitive markets where being first to market
offers economic returns to developers. In such cases where the
pressure to meet delivery schedules and to remain competitive
induces developers to release products before they are thoroughly
vetted, early adopters become, in effect, beta test sites.

4.1.1 Testing Activities

Testing requires planning, execution, and evaluation. Test
planning requires selecting the specific test to be performed and
organizing the tests. Test execution is the process of actually
conducting the selected tests. It includes the pre-run setup,
execution, and post-run analysis. In test evaluation, the test
coverage is reviewed for thoroughness of the test cases, the
product error is evaluated, and an assessment is made regarding
the need for further tests or debugging before the software can be
ready for the next stage in the production process (Kit, 1995).

When users report bugs to the software developer, the developer
has to first test the software to determine if a bug actually exists in
the software or if the error is related to the user. If the developer

It is seldom
economically
efficient to remove
all bugs even if it
were feasible.

Section 4 — Taxonomy for Software Testing Costs

4-3

confirms the bug’s existence, he re-develops the software and
undertakes another round of testing. The re-development of the
product usually consists of building a software patch that is
delivered to users.

4.1.2 Detecting Bugs Sooner

“Test early, test often” is the mantra of experienced programmers.
When defects are detected early in the software development
process, before they are allowed to migrate to the next stage,
fewer remain in the shipped product and they are less costly to
correct than if they are discovered later in the process (Kit, 1995).

For example, it is costlier to repair a bug that is created in the unit
stage in the component or system development stage than it is to
remedy the same bug in the unit stage when it was introduced.
An important reason why it is more costly to correct bugs the
longer they are left undetected is because additional code is
written around the code containing the bug. The task of
unraveling mounting layers of code becomes increasingly costly
the further downstream the error is detected.

4.1.3 Locating the Source of Bugs Faster and with More Precision

Modern software products typically contain millions of lines of
code. Precisely locating the source of bugs in that code can be
very resource consuming. If the location of bugs can be made
more precise, both the calendar time and resource requirements
of testing can be reduced. Most bugs are introduced at the unit
stage. Thus, effective testing methods for finding such bugs
before units are combined into components and components into
systems would be especially valuable.

4.2 SOFTWARE DEVELOPERS’ COST TAXONOMY
Every software developer provides at least some of their own
software testing services. In some cases, however, commercial
testing services supplement in-house services. When testing is
outsourced, the costs are simply the expenditures made by the
developer plus the implicit costs of contracting for these services.
Implicit costs are the value of self-owned resources devoted to the
activity. When testing services are self-provided, most costs are

If the location of bugs
can be made more
precise, both the
calendar time and
resource
requirements of
testing can be
reduced.

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-4

implicit, and we must identify, quantify, and value the self-owned
resources developers allocate to testing.

4.2.1 Resource Categories

The resources used in software testing can be broadly grouped
into labor and capital services. The distinguishing feature of
capital is that it is long-lived with an up-front payment, whereas
labor costs are virtually a continuous expenditure by developers.

Labor resources include all the labor-hours spent in testing the
software, locating the source of the errors, and modifying the
code. Because different types of labor have different
opportunities, it is appropriate to subdivide labor into the skill
levels used in testing. Table 4-1 describes the skills of three
major types of programming expertise used in testing software.

Table 4-1. Labor Taxonomy

Labor Type Skills

Annual Salary
(median in

2000)

Computer programmers Write, test, and maintain the detailed instructions, called
programs, that computers must follow to perform their
functions. They also conceive design and test logical
structures for solving problems by computer.

$57,590

Computer software
engineers: applications

Analyze users’ needs and design, create, modify, and
test general computer applications software or
specialized utility programs. They develop both
packaged systems and systems software or create
customized applications.

$67,670

Computer software
engineers: systems
software

Coordinate the construction and maintenance of a
company’s computer systems, and plan their future
growth. Software systems engineers work for companies
that configure, implement, and install complete computer
systems.

$69,530

Source: Bureau of Labor Statistics, Occupational Outlook Handbook, 2002.

The annual costs for labor, computers, and testware do not fully
capture the costs to developers of these resources because
overhead is not included in the estimates. To estimate the labor
cost associated with software testing, a fully loaded wage rate
should be used that includes benefits and other employee-related
costs incurred by software developers. It is impractical to quantify

Section 4 — Taxonomy for Software Testing Costs

4-5

all of these individual resources. Thus, a simple loading factor of
two is used to scale the hourly wages obtained from the BLS.

One of the two primary capital resources used in software testing
is the computer. It includes the hardware systems (including
peripherals), software (e.g., operating system, compilers), and
network configuration equipment (Wilson, 1995). Typically, these
items are considered part of the test facility. Computer resources
used in testing are further described in Table 4-2. Typically,
computers are replaced not because they are physically incapable
of performing their original purpose but because of technological
obsolescence as new computers are introduced that have more
desirable attributes (e.g., processing speed, memory).

Table 4-2. Software Testing Capital Taxonomy

Capital Type Description

Computer Resources

Hardware systems Clients, servers, simulator hardware (such as fault injectors, test
harnesses, and drivers) plus operating systems or compilers (if
necessary)

Network infrastructure Routers, cabling, data storage devices, etc.

Testing Resources (CAST)a

Tools for test planning Project management tools, database management software,
spreadsheet software, and word processors

Tools for test design and
development

Test data/case generator tools include executable specification tools,
exhaustive path-based tools, volume testing tools, data dictionary tools,
and requirements-based test design tools

Tools for test execution and
evaluation

Execution tools include capture/playback tools, test harnesses, and
drivers. Analysis tools include coverage analysis tools and mapping
tools. Evaluation tools include memory testing tools, instrumentation
tools, snapshot monitoring tools, and system log reporting tools.
Simulation tools include performance tools, disaster-testing tools,
modeling tools, symbolic execution tools, and system exercisers

aSource: Kit, Edward. 1995. Software Testing in the Real World. Essex, England: Addison-Wesley.

The second main software testing capital resource is the software
that runs the tests. Programmers may develop their own software
testing capabilities or they may purchase computer-aided software
testing (CAST) tools. Testware (software purchased or developed
for testing applications) may be designed for a single application

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-6

and then discarded, or more commonly, it is purchased or
developed with the intent to be used in several projects. Other
more general-purpose software such as spreadsheets and word
processors may also be used in testing. Testware is a product
that does not wear out with repeated use; however, it is subject to
technological obsolescence as testware and the software become
more advanced.

Testware is used for test planning, test design and development,
and test execution and evaluation. Test planning tools assist a
company in defining the scope, approach, resources, and
scheduling of testing activities. Test design tools specify the test
plan and identify and prioritize the test cases. Test execution and
evaluation tools run the selected test, record the results, and
analyze them. These tools may be supplemented with testing
support tools that are used to assist with problem management
and configuration management. Other more general-purpose
software, such as spreadsheets and word processors, may also
be used in testing (Kit, 1995).

Testing resources may be shared with software development
activities or dedicated to testing. The most obvious and important
resource subject to such sharing of responsibilities is labor. In
small organizations, testing may be each developer’s
responsibility. Usually with growth in size come opportunities for
division and specialization of labor. In the extreme case, software
developers will have a centralized test organization that is
independent of the development effort. Students of organizational
theory argue that such independence is essential to provide the
unbiased and complete examination needed to thoroughly
evaluate the product.

Computer resources have the potential to be used in both
software development and in testing. Testware, however, is
specific to the testing activity.

In addition to the resources directly employed in software testing,
any organization will have an infrastructure (overhead) needed to
support testing. Because it is not practical to enumerate all the
resources and estimate their quantities, we use a multiplier of 1.2
to capture the associated overhead costs associated with software
and hardware expenditures.

The worldwide market for
automated software quality
tools reached $931 million
in 1999 and is projected to
grow to $2.6 billion by
2004 (Shea, 2000).

Section 4 — Taxonomy for Software Testing Costs

4-7

4.2.2 Summary of Developer Technical and Economic Metrics

Software developers’ costs include both pre-release costs and
post-release costs. Pre-release costs include testing costs
absorbed by the developer of the software at each individual stage
of the testing process. Technical and economic metrics are
shown in Table 4-3.

Table 4-3. Impact Cost Metrics for Software Developers

Specific Cost Technical Metric Economic Metric

Pre-release costs

Pre-release labor costs Labor hours to support testing
to find bugs

Labor costs of detecting bugs

Labor hours for locating and
correcting bugs

Labor costs for fixing bugs

Hardware costs Total hardware used to
support testing activities and
support services

Total hardware costs to support detecting
and fixing bugs in the software
development process and support
activities

Software costs Total software used to support
testing activities and support
services

Total software costs to support detecting
and fixing bugs in the software
development process and support
activities

External Testing costs Testing services provided by
specialized companies and
consultants

Total expenditures on external testing

Post-release costs

After-sales service
costs

Labor hours for support
services

Total labor costs for support services

Post-release costs emerge after the user has accepted the
custom product or after the developer has released the
commercial product. In both custom and commercial applications,
the developer frequently supplies some type of customer support
services. This support can range from technical service hot lines
that answer questions for commercial products, to developing
patches to correct bugs that remain in the post-purchase versions
of the software, to full-service support contracts to continually
maintain and enhance custom products.

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-8

4.3 SOFTWARE USERS’ COST TAXONOMY
Software testing activities affect users primarily through the bugs
that remain in the software programs they purchase and operate.
The degree to which bugs in software products affect users’
business operations varies across the types of software product
purchased and their role in the user’s business operations. Bugs
present in software integral to the real-time business operations of
companies can significantly affect profits through installation
delays and system failures. For other software applications that
are more involved in batch or offline business operations, bugs
may be problematic but less costly.

To investigate the impact of bugs, we group user costs associated
with software into three categories:

Z pre-purchase costs—time and resources users invest to
investigate different software companies and different
software products;

Z installation costs—time and resources users invest in
installing and verifying operation of the new software
products; and

Z post-purchase costs—costs that emerge because of
software failures and the corresponding maintenance and
upkeep expenditures needed to repair the software bugs
and damaged data.

The following subsections provide more detail on these three
categories and provide a taxonomy for measuring the cost of bugs
to users.

4.3.1 Pre-purchase Costs

Bugs in software products affect users even before they purchase
the product. Because the number and severity of bugs remaining
in a software product upon purchase are unobservable, users may
be uncertain about the product’s quality. As a result, users must
invest additional time and resources to learn about the commercial
product they are purchasing or the company they are hiring to
develop their custom software. Pre-purchase costs associated
with bugs in software are shown in Table 4-4 and emerge in three
ways:

Z First, users must spend additional labor hours investigating
products, learning about products, and gaining additional
information. Senior scientists and upper management are

Section 4 — Taxonomy for Software Testing Costs

4-9

typically involved in these purchase decisions, and labor
costs can be generated using their typical hourly labor
rates.

Z Second, the time users spend investigating new software
products delays the profits that firms could have received if
they were to install the product earlier. This leads to the
continued use of products with lower quality attributes.

Table 4-4. Users’ Pre-Purchase Costs Associated with Bugs

Cost Category Specific Cost Technical Matrix Economic Matrix

Purchase decision
costs

Labor costs Labor hours spent on
information gathering and
purchase decision process

Fully loaded labor rates
times labor hours

Increase
information
gathering time

Purchase time is delayed
because of information-
gathering activities

Additional operating cost or
lost revenue due to
continued operation of
lower-quality system

Delayed adoption
costs

Delayed
adoption

Purchase time is postponed
because of uncertainty over
bugs

Additional operating cost or
lost revenue due to
continued operation of
lower-quality system

Z Third, and related to the first two items, even after users
gather all available information, they may choose to delay
adoption of a new software product until the uncertainty is
reduced when historical information is available about the
product’s quality. By delaying their purchase, users
decrease the probability of purchasing a product that has
an unexpectedly large number of bugs. Most users do not
want to be the “early adopters” or “beta testers,” so they
wait until the product has been well established in the
marketplace and several versions have been released.

The economic impacts of the second and third categories are
basically the same. They both delay the adoption of higher-quality
software and hence increase the cost of operation or delay the
introduction of new products and services. However, the source
of the delay is slightly different—one lengthens the decision-
making process, and the other delays the adoption decision.

4.3.2 Installation Costs

Bugs remaining in software after its release can significantly
increase the cost of installation. Installations of new software

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-10

technologies often fail or generate unforeseen problems as they
are integrated with existing (legacy) software products. When this
occurs, users must spend additional resources on installing and
repairing the software system. These expenditures can emerge
as additional labor hours, expenditures on consultants, or time
spent on support calls with software developers.

However, the magnitude of installation costs due to bugs and who
bears these costs differ between commercial products and custom
products. When a commercial product is purchased, installation is
generally straightforward and relatively bug free. Many commercial
software products are designed to interoperate with other
technologies, lowering the installation costs. However, if installation
problems do occur, the user typically bears most of the costs.

In contrast, custom product installation can be a very complicated
process, and users often work with the software developer or a
third-party integrator to install the new software. Contractual
arrangements determine which parties bear the bulk of
implementation costs. If third-party developers are hired to aid
with installation, then users typically bear the cost of bugs. If the
contract with software developers includes installation support,
then these costs will be captured in the total costs that the
software developers incur during the development stage. As
shown in Table 4-5, users’ labor costs can be estimated using the
fully loaded labor costs presented in the previous section and the
estimated number of additional labor hours due to software bugs.

Table 4-5. Users’ Implementation Costs Associated with Bugs

Cost Category Specific Cost Technical Matrix Economic Matrix

Installation costs Labor costs Labor hours of company
employees

Fully loaded labor rates
times labor hours

Third-party
integrator

Labor hours of consultants Consultants’ hourly rate
times labor hours charged

Lost sales Company downtime due to
extended installation

Cost of foregone profits

In addition to labor costs, bugs encountered during installation
lead to lost sales due to company downtime while the product is

Section 4 — Taxonomy for Software Testing Costs

4-11

being installed. In some cases, firms will be able to install
software outside of traditional business hours. In these cases no
sales are forfeited. However, other users may have to suspend
business operations to install software. If part of this downtime is
due to bugs in the software or increased post-installation testing
due to uncertainty over bugs, then this will lead to increased lost
profits.

4.3.3 Post-purchase Costs

Once the decision to purchase the software has been made and
the new software is installed, additional costs due to bugs may
continue to emerge. Because of bugs, software may not have the
desired functionality anticipated by users. This can lead to lower
performance or total failure of the new and/or existing software
systems. For example, bugs may lead to interoperability problems
between the new software and existing software, leading to
inefficient operations, system downtime, or lost data. Table 4-6
describes post-purchase costs associated with software bugs.

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-12

Table 4-6. Users’ Post-purchase Costs Associated with Bugs

Cost Category Specific Cost Technical Matrix Economic Matrix

Product failure
and repair costs

Labor costs Labor time of employees spent
repairing bugs and reentering
lost data

Fully loaded labor rates
times labor hours

Capital costs Early retirement or “scrapping”
of ineffective systems

Expenditures on
new/replacement system

Consultants’
costs

Hiring consultants to repair data
archives

Expenditures on outside
consultants

Sales forfeited Company downtime attributable
to lost data

Lost profit from foregone
transactions during this time
period

Inability to fully
accomplish tasks

Labor costs Labor time of employees to
implement “second best”
operating practices

Fully loaded labor rates
times labor hours

Sales forfeited Lost sales due to “second best”
operating practices

Lost profit from foregone
transactions

Redundant
systems

Hardware costs Multiple hardware systems
maintained in case of system
failure

Expenditures on hardware
systems

Software costs Licensing or updating old
software after shift to new
software system

Expenditures to license or
update old software

Labor costs Labor time of employees
maintaining a redundant
hardware and software system

Fully loaded labor rates
times labor hours for
maintaining old system

Software failures are the most publicized user impact associated
with bugs. These failures typically stem from interoperability
problems between new and existing software products. The result
of failures is frequently a shutdown in part or all of the firm’s
operations. However, not all catastrophic software failures are
associated with bugs. Some failures are due to inadequate
parameter specifications (by users) or unanticipated changes in
the operating environment. Thus, when estimating the costs
associated with software failure due to inadequate software
testing one cannot simply quantify all failure costs.

In addition to catastrophic failures, software bugs can also lead to
efficiency problems for users. Although less dramatic, when

Section 4 — Taxonomy for Software Testing Costs

4-13

software does not operate as promised, users can experience
increased operating costs due to second-best work-arounds or
patches and lost or delayed sales. User impacts can become
sizable if these bugs lead to ongoing problems that impose costs
over the life of the software product.

The final post-purchase cost that emerges because of bugs is the
cost of redundant systems. Because of uncertainty about bugs,
software users often keep their old software system in place for a
period of time after they have purchased and installed a new
software system. If bugs are continually emerging in the new
system, users may maintain their old system for significantly
longer than they would have if they were more confident about the
quality of the new software product that they purchased.

5-1

Measuring the
Economic Impacts of
an Inadequate
Infrastructure for5 Software Testing

This section describes the counterfactual scenario associated with
an inadequate infrastructure for software testing and outlines our
approach for estimating the economic impacts for software
developers and users. It also provides an introduction for the
case studies that follow in Sections 6 and 7, describing how the
impacts of inadequate software testing may differ between
CAD/CAM/CAE users in the transportation equipment
manufacturing sector and FEDI/clearinghouse software users in
the financial services sector.

5.1 DEFINING THE COUNTERFACTUAL WORLD
To estimate the costs attributed to an inadequate infrastructure for
software testing, a precise definition of the counterfactual world is
needed. Clearly defining what is meant by an “inadequate”
infrastructure is essential for eliciting consistent information from
industry respondents.

In the counterfactual scenario we keep the intended functionality
of the software products released by developers constant. In
other words, the fundamental product design and intended
product characteristics will not change. However, the realized

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-2

level of functionality may be affected as the number of bugs (also
referred to as defects or errors) present in released versions of the
software decreases in the counterfactual scenario.

The driving technical factors that do change in the counterfactual
scenario are when bugs are discovered in the software
development process and the cost of fixing them. An improved
infrastructure for software testing has the potential to affect
software developers and users by

Z removing more bugs before the software product is
released,

Z detecting bugs earlier in the software development
process, and

Z locating the source of bugs faster and with more precision.

A key assumption is that the number of bugs introduced into
software code is constant regardless of the types of tools available
for software testing; they are errors entered by the software
designer/programmer and the initial number of errors depends on
the skill and techniques employed by the programmer.9

Figure 5-1 (re-illustrated from Section 2) provides an illustration of
the software development process. The development of software
starts with the system software design, moves to implementation
and unit testing, and then ends with integration testing as the
subcomponents of the software product are assembled and then
the product is released.

Errors are generated (or introduced) at each stage of the software
development process. An improved infrastructure would find the
bugs within (or closer to) the stage in which they were introduced
rather than later in the production process or by the end user of
the software product. As described in Section 4, the later in the

9We make the distinction between inadequate software testing and inadequate

programming skills or techniques. For example, Carnegie Mellon Software
Engineering Institute has developed the Personal Software Process (PSP)
and the Team Software Process (TSP) that are designed to reduce the
number of errors in the program when it is first compiled. In general, the PSP
and TSP involve individual programmers tracking their errors to improve their
programming skills and team members thoroughly reviewing code to identify
errors prior to compiling and run time testing. For this study, we define these
programming activities as up stream and not part of the software testing
process. Thus, the number of errors generated as part of initial software
coding does not change in the counterfactual scenario. It is the process of
identifying and correcting these “exogenous” errors that changes.

A key assumption is
that the number of
bugs introduced
into software code
is constant
regardless of the
types of tools
available for
software testing.

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-3

production process that a software error is discovered the more
costly it is to repair the bug.

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-4

Figure 5-1. The Waterfall Process
In the waterfall process, testing occurs at multiple stages during the software development process.

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-5

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-6

HLD: High-Level Design
I0: HLD Inspection
LLD: High-Level Design
I1: LLD Inspection
I2: Code Inspection
UT: Unit Test
RAISE: Reliability, Availability, Install

Serviceability, and Ease of Use

Requirements
Gathering and

Analysis

Architectural
Design

HLD/I0

Component Test

RAISE System Test

Release

Early Customer
Feedback and Beta

Test Programs

LLD/I1 CODE/I2 UT

• • •
• • •

• • •
• • •

Integration

5.1.1 Developers’ Costs of Identifying and Correcting Errors

The relative cost (also referred to as cost factors) of repairing
defects found at different stages of software development increases
the longer it takes to find a bug. Table 5-1 illustrates this with an
example showing the relative differences in the cost of repairing
bugs that are

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-7

Table 5-1. Relative Cost to Repair Defects When Found at Different Stages of Software Development (Example
Only)
X is a normalized unit of cost and can be expressed terms of person-hours, dollars, etc.

Requirements
Gathering and Analysis/

Architectural Design
Coding/Unit

Test

Integration and
Component/RAIS

E System Test

Early Customer
Feedback/Beta
Test Programs

Post-product
Release

1X 5X 10X 15X 30X

introduced in the requirements gathering and analysis/architectural
design stage as a function of when they are detected. For example,
errors introduced during this stage and found in the same stage cost
1X to fix. But if the same error is not found until the integration and
component/RAISE system test stage, it costs 10 times more to fix.
This is due to the reengineering process that needs to happen
because the software developed to date has to be unraveled and
rewritten to fix the error that was introduced earlier in the production
process. However, bugs are also introduced in the coding and
integration stages of software design.

A complete set of relative cost factors is shown in Table 5-2 and
shows that regardless of when an error is introduced it is always
more costly to fix it downstream in the development process.

Table 5-2. Preliminary Estimates of Relative Cost Factors of Correcting Errors as a Function of Where Errors Are
Introduced and Found (Example Only)

Where Errors are Found

Where Errors are
Introduced

Requirements
Gathering and

Analysis/
Architectural

Design
Coding/
Unit Test

Integration
and

Component/
RAISE System

Test

Early
Customer

Feedback/Bet
a Test

Programs

Post-
product
Release

Requirements
Gathering and Analysis/
Architectural Design

1.0 5.0 10.0 15.0 30.0

Coding/Unit Test 1.0 10.0 20.0 30.0

Integration and
Component/
RAISE System Test

1.0 10.0 20.0

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-8

In addition, as part of our analysis we investigate the difference in
the cost of introducing errors in the same stage throughout the
software development process. Conceptually there is no need to
restrict the diagonal elements in Table 5-2 to be all 1.0. Each
column has its own unique base multiplier. This could capture, for
example, that errors introduced during integration are harder to
find and correct than coding or design errors.

The relative cost factors for developers shown in Table 5-2 also
illustrate that errors are found by users in the beta testing and
post-product release stages because typically not all of the errors
are caught before the software is distributed to customers. When
users identify an error, developers bear costs related to locating
and correcting the error, developing and distributing patches, and
providing other support services. Users bear costs in the form of
lost data, foregone transactions, and product failures; however,
these costs are not included in developers’ relative cost factors
and were estimated separately, as described Section 5.3.

The total cost of errors can be calculated by combining the relative
cost factors with the number and distribution of errors. Table 5-3
shows an example of the frequency distribution of where errors
may be found, in relationship to where they may be introduced.

Table 5-3. Example of the Frequency (%) of Where Errors Are Found, in Relationship to Where They Were
Introduced

Where Errors Are Found

Where Errors are
Introduced (%)

Requirement
s Gathering

and Analysis/
Architectural

Design
Coding/
Unit Test

Integration
and

Component
/ RAISE
System

Test

Early
Customer
Feedback/
Beta Test
Programs

Post-
product
Release Total

Requirements Gathering
and Analysis/Architectural
Design

3.5 10.5 35 6 15 70

Coding/Unit Test 6 9 2 3 20

Integration and
Component/RAISE
System Test

6.5 1 2.5 10

Total 3.5 16.5 50.5 9 20.5 100%

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-9

The “smoothed” cumulative distribution of error detection is
depicted in Figure 5-2. The data in this figure exhibit the classic S
shape of the cumulative distribution of the discovery of errors with
respect to life-cycle stages as published by several researchers
(Vouk, 1992; Beizer, 1984). This is important because it (along
with Table 5-3) most clearly illustrates the problem plaguing the
software development industry for years: “Most software errors
are found during the middle to later stages of development
(namely integration through primary release), which happen to be
the most expensive stages to fix errors” (Rivers and Vouk, 1998).

Figure 5-2. Typical Cumulative Distribution of Error Detection

100

90

80

70

60

50

40

30

20

10

0
R-D C-U I-S E-R

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Errors Detected in Each Stage

P-R

Legend:
R-D: Requirements Gathering and Analysis/Architectural Design
C-U: Coding/Unit Test
I-S: Integration and Component/RAISE System Test
E-R: Early Customer Feedback/Beta Test Programs
P-R: Post-product Release

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-10

Combining the distribution of where errors are found with the
relational cost factors to correct the errors provides a graphical
depiction of developers’ costs. In Figure 5-3, the area below the
step-wise graph represents the costs associated with errors
detected in the various stages of the software life cycle. Thus, if
we knew the total expenditures software developers spend on
testing and correction activities, we can solve for the average cost
per bug and the individual step-wise areas shown in Figure 5-3.

Figure 5-3. Software Testing Costs Shown by Where Bugs Are Detected (Example Only)
“Costs” can be expressed in terms of expenditures or hours of testing time.

Average
Cost per

Bug

X1

X2

X3

X4

X5

I-S

R-D

C-U

15% 20% 40% 15% 10%

Distribution Where
Bugs Are Detected

100%

E-R P-R

I-SR-D C-U E-R P-R

Legend:
R-D: Requirements Gathering and Analysis/Architectural Design
C-U: Coding/Unit Test
I-S: Integration and Component/RAISE System Test
E-R: Early Customer Feedback/Beta Test Programs
P-R: Post-product Release

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-11

5.1.2 Counterfactual Scenario for Developers

The core of our counterfactual scenario for developers can then
be described in terms of the introduction–found categories as
shown in Figure 5-4. The impact of an inadequate infrastructure
for software testing on fixing errors can be calculated from

Z changes in the relative cost factors in the introduction–
found error categories (Table 5-2) and

Z changes in the distribution of where errors are detected
(Table 5-3).

Figure 5-4. Cost Reductions of Detecting Bugs and Fixing Them Faster (Example Only)
Shaded area represents the developers’ costs due to an inadequate infrastructure for software testing.

Average
Cost per

Bug

Lower Cost of
Fixing Bugs

Detecting
Bugs

Earlier

Distribution Where
Bugs Are Detected

C1

C0

15%

20%

For example, the cost to fix a bug that occurred during the coding
stage that is not discovered until the integration phase may
decrease from C0 to C1 if enhanced software testing tools
decrease the time needed to locate the error’s source.
Alternatively, with better testing tools, more bugs introduced in the
requirements stage might be found during that stage, increasing
the percentage of bugs found in this stage from 15 to 20 percent.

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-12

Note again that the total number of errors introduced into the
software is assumed to be unchanged in the counterfactual.
These bugs are a normal and expected part of the software
production process. The distribution of the bug’s location and the
cost of fixing the errors change.

In addition to changes in correction costs and detection
distribution described in Tables 5-2 and 5-3, we also investigated
changes in fixed costs such as hardware and software used to
support software testing. With enhanced testing tools developers
may change their annual expenditures on these capital inputs.
However, changes in labor costs associated with locating and
correcting errors are the dominant economic impact for
developers.

5.1.3 Counterfactual Scenario for Users

The primary impact for users associated with the counterfactual of
an improved infrastructure for software testing is that few bugs
would make it to the software operations stage. This would lead
to lower user maintenance costs and lower software failure costs.
In Section 5.4 we discuss the behavior changes users may
undertake in response to fewer bugs. For example, changes in
avoidance activities such as backup data storage and redundant
operating systems may represent significant annualized cost
savings.

A key assumption in the counterfactual scenario is the “level” of
reduction in the number of bugs encountered by users during
business operations. In some instances it may be unrealistic to
assume that an improved infrastructure will lead to the detection of
all bugs during software testing. As part of the developers’
surveys, we asked developers to estimate cost impacts under
different percentage error reduction scenarios.

5.2 CUSTOM VERSUS COMMERCIAL SOFTWARE
PRODUCTS
To quantify the economic costs attributable to an inadequate
infrastructure for software testing, we distinguish between costs
borne by the developer of the software product and costs borne by
the users of the software product. This distinction is necessary to

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-13

facilitate data collection activities and prevent double counting. To
support this partitioning of costs, we will need to be cognizant of
the difference between custom and commercial software product
development, as presented in Figure 5-5.

Custom Development Commercial Products

Software Development
(Developer Cost)

Testing
(Developer Cost)

Implementation
(Developer and User Cost)

Performance/Operation
(User Cost)

Software Development
(Developer Cost)

Testing
(Developer Cost)

Implementation
(User Cost)

Performance/Operation
 (User Cost)

Release

Figure 5-5. Custom vs.
Commercial Development Cost
Allocation

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-14

Both custom and commercial (prepackaged) software products have
similar production processes. As shown in Figure 5-5, they both
start with software design and coding, move to software unit and
integration testing, then implementation, and finally to operation and
product support.

The primary difference between custom and commercial software
products is that there is no formal release for custom products and
the implementation may require significant resources compared to
commercial products. As a result, the developer plays a much
larger role in the implementation and post-purchase service of
custom software, compared to commercial software. Finally, third-
party integrators are frequently involved in implementing custom
software. Because third-party integrators are typically hired by
users, we collected this cost information as part of the user surveys.

5.3 ESTIMATING SOFTWARE DEVELOPER COSTS
An inadequate infrastructure for software testing will lead to errors
being identified later in the development process and more
resources being needed to locate and correct the source of the
error. These consequences affect developer costs throughout the
software’s life cycle through changes in the following:

Z labor costs—additional employee and contract labor
expenditures for pre-purchase testing and error correction,
installation, and post-purchase repair;

Z software costs—additional or redundant testing software
purchases;

Z hardware costs—additional expenditures on equipment,
computers, and other physical technologies used in the
testing process;

Z after-sales service costs—additional nontesting and
debugging activities such as fielding an increased number
of service calls and the distribution of patches;

Z delay costs—discounted value of lost profits due to time
delays in product releases and delayed adoption by users
due to large numbers of bugs in early software versions;
and

Z reputation costs—lost sales or market share due to highly
publicized product failures.

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-15

The impact cost metrics that guided the development of the
survey instruments for survey developers are discussed in Section
4 and are summarized in Table 5-4.

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-16

Table 5-4. Impact Cost Metrics for Software Developers

Cost Category Specific Cost Technical Metric Economic Metric

Pre-release
labor costs

Labor hours to support testing
to find bugs

Labor costs of detecting bugs Pre-release
costs

Labor hours for location and
correction of bugs

Labor costs for fixing bugs

Hardware
costs

Total hardware used to
support testing activities and
support services

Total Hardware costs to support
detecting and fixing bugs in the
software development process and
support activities

Software costs Total software used to support
testing activities and support
services

Total software costs to support
detecting and fixing bugs in the
software development process and
support activities

External
Testing costs

Testing services provided by
specialized companies and
consultants

Total expenditures on external testing

Post-release
costs

After sales
service costs

Labor hours for support
services

Total labor costs for support services

Current
Distribution of
Cost and Errors

Relative cost
factors

Relative cost factors relating
the cost of correcting errors for
each introduction-detection
category (Table 5-2)

Area under graph in Figure 5-2 shows
the distribution of costs by the stage
detected

Distribution of
bugs

Distribution of detected bugs
over the introduction-detection
space (Table 5-3)

∆ Relative
cost factors

Change relative cost factor for
introduction-detection
categories (Table 5-2)

Change in labor costs locating and
correcting errors once they have been
identified

Counterfactual
Scenario
(improved
testing
infrastructure) ∆ Distribution

of bugs
Change in distribution of bug
introduction-detection
(Table 5-3)

∆ Hardware Change in hardware needed to
support error detection,
location and correction

Change in annual hardware
expenditures

∆ Software Change in software needed to
support error detection,
location and correction

Change in annual software
expenditures

Impact on sales Delayed
market
introduction

Length of delay and the
number of units that would
have been sold per period of
delay

Delayed benefits to users

Delayed user
adoption

Decreased market penetration Delayed benefits to users

Reputation Lost market share NA—transfer payments

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-17

To quantify developer costs, we began by asking for the
company’s total pre-release testing costs and post-release (after-
sales) service costs. We asked them to break the pre-release
testing costs into total labor costs, software expenditures,
hardware expenditures, and external testing services.

The remaining developer metrics in Table 5-4 address the
incremental impact of an inadequate software infrastructure. The
information represented in Tables 5-2 and 5-3 first was developed
for current development practices, referred to as the baseline
scenario, and second for the counterfactual scenario of improved
testing capabilities. During the case studies, we asked developers
to focus on changes in labor costs captured by the relative cost
factors when filling out the cost tables. We anticipated that labor
costs account for most of the impact of an inadequate software
testing infrastructure on software developers. However, we also
asked developers to estimate the impact of improved testing
capabilities on hardware and software expenditures.

Finally we asked developers about the impact of market delay and
reputation on revenues. As shown in the economic welfare
equations in Section 3.6, these developer revenues do not directly
enter into the calculation of economic impacts because they
represent transfer payments between consumers and producers.
However, the delay in introducing new products indirectly creates
economic impacts by delaying the benefits realized by users from
adopting new software products. Thus, in this light, developers
delaying product introduction and users delaying adoption have a
similar impact.

5.4 ESTIMATING SOFTWARE USER COSTS
Inadequate software testing affects users through the uncertainty
and number of bugs remaining in software that is released. Users
are at the end of the supply chain and are the source of benefits
and costs realized from software quality. For example, if there is a
software failure that prevents a transaction from occurring or
delays the release of a new product, these costs originate with the
users.

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-18

User costs associated with software errors begin with the software
purchase decision. Users evaluate the set of potential software
products that are available to them and compare price and quality.
This search process is costly and requires time because users do
not have complete information about the quality of all of the
software products that they could purchase. This lack of an ability
to compare across products based on price and quality is
magnified by an inadequate software testing infrastructure
because uncertainty about bugs and interoperability increases.
As a result, users must spend additional time and resources to
determine which product to buy and in some instances may delay
purchasing new software products until more information about
software quality is revealed by early adopters. Delays in adoption
reduce the benefits from the new software and in turn lead to
reductions in economic welfare.

Once users have decided to purchase a product, they must install
and incorporate it into their business operations. If the product is
a custom product, implementation can be potentially costly and
may involve significant effort by both users and developers.
Custom products must frequently be integrated with legacy
systems, and errors leading to interoperability problems may exist
in both the new software and the legacy software. Bugs
encountered while implementing a custom product can lead to
delays in bringing the system on line and the need for special
patches and interface programs. The potential for excess costs
due to an inadequate software testing infrastructure may be great
at this point. To a lesser extent, these problems also potentially
exist when implementing commercial software products.
However, typically implementation problems such errors leading to
improper or incomplete installation are minimal with commercial
software.

The final stage of the process for users occurs after the product
has been implemented and business operations begin. At this
point, additional bugs that cause the system to fail may emerge
that were not captured during development and implementation.
Costs associated with bugs in this stage can be catastrophic and
include loss of production data and customer information, lost
sales, production delays, and lost reputation and market share.

This search process
is costly and
requires time
because users do
not have complete
information about
the quality of all of
the software
products that they
could purchase.

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-19

The general costs categories for software users are described
below:

Z labor costs—additional employee and contract labor (third-
party integrators) expenditures for testing, installation, and
repair of new software due to an inadequate infrastructure
for testing the software before it is purchased;

Z failure costs—costs associated with catastrophic failure of
software products;

Z performance cost—impact on users’ operating costs when
software does not perform as expected. These include the
cost of “work arounds” and loss of productivity when
purchased software does not perform as anticipated;

Z redundant systems—additional hardware or software
systems that users maintain to support operations and
back up data in case of a software failure attributable to an
inadequate infrastructure for software testing;

Z delayed profits—discounted value of time delays in
production and transactions attributable to an inadequate
software product; and

Z sales forfeited—discounted value of foregone transactions
due to an inadequate software product.

Redundant systems resulting from inadequate software testing
represent a significant, but less publicized, economic impact.
Companies commonly maintain parallel systems for up to a year
or more as a security measure against catastrophic failures. If an
improved software testing infrastructure could reduce the
probability and severity of bugs remaining in products after
purchase, the time window for redundant systems could be greatly
reduced.

The number of bugs still remaining in software products with an
improved software testing infrastructure is a key assumption that
must be clearly addressed in the counterfactual scenario and
related data collection efforts. Because assuming that all bugs
can be removed is not realistic, users were asked how different
cost categories will be affected by a partial reduction in bugs (say
a 75 percent reduction). Our approach to quantifying the impact
of removing most but not all of the bugs users encounter is to

Z estimate the total cost of bugs to users and
Z determine which costs are linearly related to the number of

bugs encountered and which costs are nonlinearly related.

Companies
commonly maintain
parallel systems for
up to a year or
more as a security
measure against
catastrophic
failures.

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-20

Table 5-5 summarizes cost categories and metrics for measuring
the total costs bugs impose on users. We began our user surveys
by asking respondents to estimate the total cost of bugs in each
category. It is simpler for software users to provide information on

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-21

Table 5-5. Cost Metrics for Users

Cost Category Specific Cost Technical Matrix Economic Matrix
Pre-purchase Costs

Purchase decision
costs

Labor costs Additional effort spent searching
for a new CAD/CAM/CAE and
PDM software product

Labor costs of
employees

Delayed installation
costs

Delay
associated with
search

Additional time spent searching
for a new CAD/CAM/CAE and
PDM software product.

Delayed benefits from
adoption of new
software products

Delayed
adoption due to
uncertainty

Delayed adoption time
associated with uncertainty over
quality of CAD/CAM/ CAE and
PDM software

Delayed benefits from
adoption of new
software products

Post-purchase costs
Installation costs Labor costs User labor hours required for

installation and testing
Fully loaded wage rate
times number of Labor
hours

Labor costs Consultant labor hours required
for installation and testing

Fully loaded wage rate
times number of Labor
hours

Delay costs Delays due to new software
causes old software to fail, or old
software prevents new software
from working

Lost benefits
associated with new
software product

Product failure costs Delayed profits Time required to reenter lost
data

Time delay attributable
to reentering data

Repair costs Labor time of employees and
consultants reentering lost data
or repair data archives

Labor costs of
employees and
consultants

Replacement
costs

Early retirement or “scrapping” of
ineffective systems

Expenditures on new/
replacement systems

Lost sales Company downtime attributable
to software failure

Lost profit from
foregone transactions
during this time period

Reputation
costs

Future impact on market share Expenditures on
outside consultants

Suboptimal
performance

Inability to fully
accomplish
tasks

Resources expended for
patches and work arounds—may
be one-time cost or ongoing
activity

Increased labor and
hardware expenditures
that would be needed
to accomplish the same
task

Redundant systems Hardware costs Multiple hardware systems
maintained in case of system
failure

Expenditures on
hardware systems

Software costs Maintaining old or redundant
software system after shift to
new software system

Maintenance and labor
expenditures on old
software

Labor costs Labor time of employees
maintaining a redundant system

Labor costs of
maintaining old system

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-22

their total costs associated with bugs as opposed to marginal
changes in costs associated with an incremental decrease in
bugs.

Users were then asked to assess general trends in how the total
costs they provide would change as the number of bugs is
reduced. For example, how would each cost category change if
bugs were cut in half or reduced by 75 percent? For product
failure or installation, the cost of bugs may be linearly related to
the number of bugs (i.e., if product failures are reduced by 75
percent, then repair and lost sales would be reduced by 75
percent). However, for other cost categories, such as redundant
system costs, a 75 percent reduction in the probability of bugs
may not significantly reduce the need for backup systems.

Figure 5-6 illustrates the relationship between user costs and the
percentage reduction in bugs. The case studies investigate the
shape of these curves for each cost category listed in Table 5-5.
These relationships are useful for conducting sensitivity tests.
The relationships in Figure 5-6 also allow us to estimate the upper
and lower bounds for economic impacts associated with ranges,
such as 50 to 100 percent, of reductions in bugs.

In addition, as described in the Section 5.6, the total costs and the
relationship between total costs and the percentage reduction in
bugs will be different for different sectors of the economy. A
separate set of curves were developed for each of the two case
studies in Sections 6 and 7.

5.5 PERIOD OF ANALYSIS
Two conventions are available for developing the costs of an
inadequate infrastructure for software testing. They are to
express them either for

Z a specific historical period (e.g., 2000) or
Z a specific product or set of products.

The empirical analysis that follows uses the first approach. The
advantage of the historical period is that it directly provides the
cost information in dollars per year where it can be readily
compared to other annual flows. With this approach, impacts can

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-23

be expressed as annual spending on software testing. The
drawback with this

Figure 5-6. Relationship between Users Costs and Percentage Reduction in Bugs

Percent
Reduction

in Total
Costs

100%

Current
Total
Costs

(100%)

Failure Costs

Redundant
System Costs

Percent
Reduction in

Bugs

approach is that, for any set of developers, the period for which
the information is collected may be unrepresentative of the costs
for a typical year. For example, simply by historical accident, one
may collect data for a year during which new projects were
atypically few or frequent.

By developing estimates of the testing costs for a product, we can
be sure that the costs are comprehensive, not subject to a
sampling convention. With this approach, one would be able to
say something like “the testing cost of a typical software
development project is about $y.” However, we would have no
indication of how often that cost is incurred. All products would
have to be enumerated, both commercial and in-house, and
putting them on an equal footing to calculate an annual cost

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-24

estimate would be difficult. Further, this approach requires greater
recall by respondents than the first approach. For these reasons,
we selected the first approach and collected testing resource
usage and cost data from developers for 2000.

5.6 INDUSTRY-SPECIFIC USER COSTS
Different industries experience different types of costs from an
inadequate infrastructure for software testing. The individual
industry studies that follow in Sections 6 and 7 describe how user
costs differ between CAD/CAM/CAE users in the transportation
equipment manufacturing sector and FEDI/clearinghouse software
users in the financial services sector.

The transportation equipment manufacturing and financial
services sectors differ in several important ways. The most
important difference may be in the timing of business-to-business
(B2B) interactions. The design of transportation equipment is
generally a batch process where different subunits of the machine
are designed and then assembled. On the other hand, the
financial services sector relies on real-time processing to reconcile
transactions between two entities.

A second major difference between the two industries is in the
nature of their B2B relationships. The transportation equipment
manufacturing industry has traditionally interacted with a well-
defined set of customers; buyer–supplier relationships are well
established and frequently characterized by long-term business
agreements. Knowledge of the users’ customers and repeat
business may be used to mitigate some software shortcomings.
In contrast, in the financial services sector, transactions can occur
with anyone at any point in time. This creates a different set of
needs and potential impacts within the financial services sector.
However, it should be noted that the production process in the
transportation equipment manufacturing sector is becoming more
similar to the financial services sector as concurrent engineering
and B2B commerce networks are established.

The different roles software plays in the business operations of
these two industry sectors lead to different impacts associated
with an inadequate infrastructure for software testing. Based on
the ISO standards’ quality categories presented in Section 1,

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-25

Table 5-6 indicates the quality issues associated with using
software in the two industries.

Table 5-6. Importance of Quality Attributes in the Transportation Equipment and Financial Services Industries

Quality
Category Main Issues

Transportation
Equipment Financial Services

Functionality Attributes of software that focus on the
set of functions, the results of those
functions, including security, timeliness,
and adherence to common standards

Less important
because of fewer
outside interactions

More important
because of security,
timeliness, and
interaction issues

Reliability Attributes of software that bear on the
frequency of failure by faults in the
software, its specified level of
performance, and its ability to recover
lost data

Important because
of use in product
design

More important
because of need to
recover lost data if
failure occurs

Usability Attributes of software that bear on the
users’ ability to understand, use, learn,
and control the software

More important
because of
manipulation of
software to design
product

Less important
because of minimal
accounting
knowledge required
to engage in a
transaction

Efficiency Attributes of software that bear on
response and processing times of the
software

Less important
because of batch
processing

Very important
because of real time
processing

Maintainability Attributes of software that bear on the
effort needed for diagnosing failures,
removing failures, updating the
software, and validating changes to the
software

More important as
errors become more
costly to repair the
longer they stay in
the production
process

More important as
errors become more
costly to discover
the longer they stay
in the production
process

Portability Attributes of software that bear on the
opportunity for its adaptation to different
environments, ease of installation, and
interaction with other software

Less important
because of
commonly agreed
upon interoperability
standards (STEP)

Very important
because of potential
interactions with
numerous types of
users

6-1

Transportation
Manufacturing6 Sector

This section investigates the excess costs incurred by software
developers and users in the transportation equipment
manufacturing sector due to an inadequate infrastructure for
software testing. The impact estimates are based on interviews
with developers and users of CAD/CAM/CAE and PDM software.

Impact estimates were developed relative to two counterfactual
scenarios. The first scenario investigates the cost reductions if all
bugs and errors could be found in the same development stage in
which they are introduced. This is referred to as the cost of an
inadequate software testing infrastructure. The second scenario
investigates the cost reductions associated with finding an
increased percentage (but not 100 percent) of bugs and errors
closer to the development stages where they are introduced. The
second scenario is referred to as a cost reduction from feasible
infrastructure improvements.

Table 6-1 presents an overview of the economic impact estimates
for the development and use of CAD/CAM/CAE and PDM
software in the U.S. automotive and aerospace industries. The
total impact on these transportation equipment manufacturing
sectors from an inadequate software testing infrastructure is
estimated to be $1.8 billion. The potential cost reduction from
feasible infrastructure improvement is $0.6 billion. Developers of
CAD/CAM/CAE and PDM software account for approximately
25 percent of the total

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-2

Table 6-1. Cost Impacts on U.S. Software Developers and Users in the Transportation Manufacturing Sector Due to
an Inadequate Testing Infrastructure ($ millions)

The Cost of Inadequate
Software Testing

Infrastructure

Potential Cost Reduction from
Feasible Infrastructure

Improvements

Software Developers

CAD/CAM/CAE and
PDM $373.1 $157.7

Software Users

Automotive $1,229.7 $377.0

Aerospace $237.4 $54.5

Total $1,840.2 $589.2

impact. Users account for the remaining share: the automotive
industry accounts for about 65 percent and the aerospace industry
accounts for about 10 percent.

This section begins with an overview of the use of CAD/CAM/CAE
and PDM software in the transportation manufacturing sector. A
more detailed industry profile of CAD/CAM/CAE/PDM software
developers and users is provided in Appendix B. We then
describe the analysis approach and survey findings used to
estimate the economic impacts of an inadequate infrastructure for
software developers and software users in the automotive and
aerospace industries in Sections 6.2 and 6.3.

6.1 OVERVIEW OF CAD/CAM/CAE AND PDM
SOFTWARE IN THE TRANSPORTATION
MANUFACTURING SECTOR
Transportation equipment manufacturing consists of the
production of products used for road, rail, water, and air
transportation. It is one of the largest sectors in the economy, with
total sales of over $639 billion in 2000 and employment of more
than 1.8 million people (U.S. Department of Commerce, 2002).

Software use within the transportation sector has steadily
increased in recent years. It has now reached the point where
transportation equipment is designed and production is managed
almost exclusively with computers.

Section 6 — Transportation Manufacturing Sector

6-3

This section provides a framework for understanding the
interactions between CAD/CAM/CAE and PDM software developers
and users in the transportation equipment manufacturing sector.
The interrelationship of these sectors is shown in Figure 6-1.

Figure 6-1. Economic Relationship Among CAD/CAM/CAE Producers and Consumers
Several information technology and service industries provide CAD/CAM/CAE software and services to
manufacturers.

Software
Publishing
(511210)

Computer
Systems Design &
Related Services

(5415)

Testing
Services Modified &

Tested CAD/
CAM/CAE
Software

Transportation
Equipment
Manufacturing (336)

Manufactured
Products

CAD/CAM/CAE
Software

6.1.1 Use of CAD/CAM/CAE and PDM Software

The development and manufacturing of transportation equipment,
like all products, goes through a product development cycle.
Products move from a planning phase through design and
engineering phases and end with the manufacturing and
production phase. Figure 6-2 illustrates both the production
process and points at which CAD/CAE/CAM and PDM are used.

Engineers use two key types of software tools: “point tools” and
“life-cycle” tools. CAD, CAE, and CAM are point tools because
they are applied to one part of the production process. PDM is a
life-cycle tool used to manage the flow of information throughout
the product development cycle and the manufacturing
organization.

CAD, CAM, and CAE refer to functions that a computer and
peripheral equipment may perform for a user with the aid of
application software.

CAD, CAM, and
CAE refer to
functions that a
computer and
peripheral
equipment may
perform for a user
with the aid of
application
software.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-4

CAD software functions enable users to design products and
structures with the aid of computer hardware and peripherals
more efficiently than with traditional drafting technologies. The
user

Product Planning

Product Development Cycle Software Uses

Product Design

Product Engineering

Production

CAD

CAE

CAM

PDM

creates a computer image of a two-dimensional or three-
dimensional design using a light pen, mouse, or tablet connected
to a workstation or personal computer. The design can be easily
modified. It can be viewed on a high-quality graphics monitor from
any angle and at various levels of detail, allowing the user to
readily explore its physical features. Designers can use CAD
software to integrate drawings in such a way that adjusting one
component alters every attached component as necessary.

CAM software functions allow a manufacturer to automate
production processes. CAM software includes programs that
create instructions for manufacturing equipment that produces the
product. In addition, the software provides instructions to other
computers performing real-time control of processes, in using
robots to assemble products, and in providing materials
requirements associated with a product design (P.C. Webopaedia,
1996).

Figure 6-2. CAD/CAE/CAM
and PDM in the Product
Development Cycle

Section 6 — Transportation Manufacturing Sector

6-5

CAE software functions allow users to conduct engineering
analyses of designs produced using CAD applications to
determine whether a product will function as desired. The
engineering analysis may involve simulating the eventual
operating conditions and performance of a designed product or
structure. Or users can analyze the relationships between
components of a product system.

PDM software supports concurrent engineering by managing all of
the product-related information generated throughout the product
life-cycle. PDM creates a master document that can be logged
out and held in a secure location. Other engineers working on the
project can access a duplicate copy that they can use in their
work. Whenever changes are made to the master copy, all users
are notified and the copy that they are using is updated to reflect
any changes. PDM tools focus on automating existing processes
and managing electronic documentation, files, and images. PDM
is used almost exclusively in CAD/CAM/CAE systems.

6.1.2 Development of CAD/CAM/CAE and PDM Software

The CAD/CAM/CAE and PDM software industry that supplies the
transportation sector is a complex and changing landscape of
information technology products, publishers, designers,
consultants, and product users. Underlying this industry is a set of
production relationships characterized by substantial resource
requirements for product development and relatively few
resources to reproduce and distribute the product.

The total CAD/CAM/CAE industry comprises a small set of
publishers who sold an estimated $9.3 billion worth of software
products in 1999 and a very large number of potential users
(Daratech, Inc., 1999). The industry also consists of a number of
firms that make modifications to the basic CAD/CAM/CAE
software products, tailoring them to specific applications; firms that
provide design and related services; and consulting firms that
primarily assist users in selecting and installing the software. The
PDM industry is smaller than the CAD/CAM/CAE industry, with
total sales estimated at $1.76 billion in 1999, but it is expected to
grow rapidly with total sales expected to reach $4.4 billion by 2004
(CIMdata, 2000).

PDM software
supports concurrent
engineering by
managing all of the
product-related
information
generated
throughout the
product life-cycle.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-6

The CAD/CAM/CAE and PDM software industries are built around
the software’s capability to store, search, retrieve, copy, filter,
manipulate, view, transmit, and receive digital representations of
product design and operation information. Digitized information is
anything that can be digitized (encoded as a stream of bits).
Information products such as CAD/CAM/CAE software are defined
by unique characteristics:

Z a lack of tangible attributes,
Z association with multiple forms of presentation,
Z the possibility of delivering the product with no direct

contact between the supplier and consumer,
Z protection by copyright laws, and
Z the ease of adding value to the product (Executive Office

of the President, 1998).

The difficulty of potential users determining the precise
characteristics of software a priori makes it an experience good:
its characteristics must be learned through use; they cannot be
determined by simple observation. This characteristic introduces
a source of uncertainty in the purchase decision.

Software is also an investment good. It is used by manufacturers
over a period of time, usually years, and has several features
common to all investment goods (Dixit and Pindyck, 1994):

Z Irreversibility: The up-front costs of product purchase,
evaluation, installation, testing, and worker training
required to use the product are, once incurred, sunk costs
that are unretrievable if the consumer changes her mind
regarding the product’s utility. Furthermore, once users
create designs using the new software, the designs
generally do not translate easily into other design formats,
which makes switching to a different software package
additionally costly.

Z Uncertainty: The future market demand for the
manufacturer that will use the software product is unknown
to the consumer. In addition, there is uncertainty over
interest rates and the quality of the software product that
the manufacturer purchases. Prior to purchasing and
using the software, the consumer will have priors on the
capability, usability, performance, reliability, installability,
maintainability, documentation, and availability of the
product but not until it is used will she be able to determine
the accuracy of those priors.

Z Postponability: There is leeway in the timing of most
investment opportunities. Investors can delay their

Section 6 — Transportation Manufacturing Sector

6-7

purchase of the software to gather additional information
on the market conditions and characteristics but at the cost
of foregoing the product’s expected benefits.

6.2 SOFTWARE DEVELOPER COSTS IN THE
TRANSPORTATION MANUFACTURING SECTOR
To investigate software testing costs, we conducted interviews
with 10 developers of CAD/CAM/CAE and PDM software
products. Companies were typically forthcoming in their
discussions of inadequate software tools and methods. All agreed
that improved infrastructure could reduce testing costs and
accelerate the time to market for their products.

However, not all companies completed the entire survey that was
used to collect information to quantify the costs of an inadequate
software testing infrastructure for CAD/CAM/CAE/PDM
developers. In several instances vendors said that information on
testing expenditures and errors discovered was confidential
because they reflected detailed information about their product
development process. But the most common reason for firms not
providing data was the simple fact that they did not track these
metrics and the data were not available.10

Several companies agreed that tracking metrics targeted in the
survey instrument, such as the types of bugs found, in what stage
of development they were introduced, and where they were found,
would be very useful for developing better testing methods and
guidelines. One software tester said that statistics on where
errors are introduced and where they are found is “exactly the
type of information they need to improve testing efficiency.”
However, typically time and resource constraints prevented them
from tracking this information. Companies indicated that in the
current environment, software testing is still more of an art than a
science, and testing methods and resource are allocated based
on the expert judgment of senior staff.

Error-tracking procedures and the resulting resource estimates
would be particularly useful in the initial product development

10In the absence of actual data on errors in the software development process,

vendors were asked to estimate the distributions of where errors were found
and introduced. However, in almost all instances respondents were
uncomfortable speculating about their error distributions and declined to do
so.

Companies
indicated that in the
current
environment,
software testing is
still more of an art
than a science, and
testing methods
and resource are
allocated based on
the expert judgment
of senior staff.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-8

planning stages. Firms indicated that a lack of detailed timelines
based on accurate estimates of testing needs frequently leads to
limited resources in the early stages of development, resulting in
errors propagating through the R&D process and not found until
the later stages of commercialization. Respondents agreed that
finding the errors early in the development process greatly
lowered the average cost of bugs and errors. Most also indicated
that the lack of historic tracking data and inadequate tools and
testing methods, such as standard protocols approved by
management, available test cases, and conformance
specification, limited their ability to obtain sufficient testing
resources (from management) and to leverage these resources
efficiency.

The remainder of this subsection quantifies the cost savings due
to finding bugs and errors closer to when they are introduced
based on four completed interviews with three
CAD/CAD/CAE/PDM vendors. We used the empirical results from
the developer surveys to quantify the economic impacts for the
counterfactual scenarios described below.

6.2.1 Estimation Approach

To estimate the costs associated with an inadequate
infrastructure, we made two key assumptions/clarifications to
make the analysis tractable:

Z The same number of bugs still occurs regardless of the
infrastructure used or the quality of that infrastructure (i.e.,
bugs are attributed to human error and will continue to
occur).

Z An improved infrastructure does not change where bugs
are introduced because this again is assumed to be a
function of human error.

With these assumptions in mind, the primary impact of an
improved infrastructure is to lower the cost of testing and fixing
bugs and errors and find the bugs closer to the time they were
introduced.

Developers were asked questions to support the evaluation of two
counterfactual scenarios for which economic impacts are
estimated. The first scenario estimates the cost savings
developers would realize if all bugs and error were found in the

Section 6 — Transportation Manufacturing Sector

6-9

same development stage that they were introduced. This is
referred to as the cost of an inadequate infrastructure for software
testing. In addition to finding all errors sooner, this scenario
includes the impact an improved software testing infrastructure
has on lowering the costs of finding and repairing bugs and errors
that are introduced and found in the same stage.

The second scenario reflects that it may not be possible to
develop a testing infrastructure that would support “perfect”
software testing and that some errors are still likely be found in
later development stages. This is referred to as an “feasible”
infrastructure for software testing. To define this scenario, we
asked software testers how the distribution of where errors are
found as a function of where errors are introduced would change
with enhanced testing tools and methods. The costs are then
treated as a function of the time it takes to find and fix them and
how much sooner the bugs that are introduced are found.

6.2.2 Survey Findings

The software developer survey instrument is presented in
Appendix C. We contacted developers by telephone and asked
them to complete the questionnaire as part of an informal
interview. Four developers of CAD/CAM/CAE and PDM software
products completed substantial portions of the entire survey. The
remaining six developers returned partially completed surveys due
to the confidentiality and lack of data tracking systems discussed
above.

As part of the survey, developers were asked to estimate the
current distribution of bugs (where they are introduced and where
they are found), the time required to fix a bug given the stage
where it was found, and the stage where it was introduced. In the
final sections of the survey developers were then asked their
expectations of how an improved infrastructure would affect these
distributions and costs.

Table 6-2 presents the first key pieces of information needed to
calculate the impact estimates of an inadequate infrastructure for
software testing. The table shows the distribution of where
software bugs are found and their introduction point. For
example, 40 percent of bugs are found in the coding/unit testing

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-10

stage. Of the bugs found in this stage, one-fifth (8 percent of 40)
were introduced in the requirements stage and the other four-fifths
(32 percent of 40) were introduced in the coding/unit testing stage.

As shown in Table 6-2, over 80 percent of errors are introduced in
the coding/unit testing stage, but well over half of these errors are
not found until downstream in the development process.11

Table 6-2. Distribution of Bugs Found Based on Introduction Point
The diagonal elements in bold represent the occurrences where software errors are found in the same development
stage where they are introduced. Occurrences to the right of the bold diagonal indicate errors found “downstream” in
the product development process.

Stage Found

Stage Introduced
Requirement

s
Coding/Unit

Testing Integration
Beta

Testing

Post-
product
Release

Row
Percentag

e

Requirements 5.0% 8.0% 2.3% 0.2% 0.2% 15.6%

Coding/unit testing NA 32.0% 40.5% 4.5% 4.5% 81.5%

Integration NA NA 2.3% 0.4% 0.4% 3.0%

Column
percentage

5.0% 40.0% 45.0% 5.0% 5.0% 100.0%

NA = Not applicable because a bug cannot be found before it is introduced.

Once the distribution of bugs is determined, the next step is to
determine the costs of fixing a bug based on the point of
introduction. As discussed above, the costs of fixing a bug are
greater the farther away from the point of introduction that the bug
is found. This occurs for several reasons. First, it is more difficult
to find a bug the farther away from the point of introduction.
Second, more code has to be rewritten the farther away from the
point of introduction that the bug is found.

11Note that we are investigating only bugs and errors introduced in the software

product development process. Errors introduced during beta testing or
implementation are not included in the distributions in Table 6-2. However,
developers said that it is often difficult for the testers and software engineers
to determine where the bug was introduced by the user or as part of the
development process.

Section 6 — Transportation Manufacturing Sector

6-11

Table 6-3 shows resources (costs) in terms of the average
number of tester hours required to investigate and fix a bug based
on the survey responses.

Table 6-3. Hours to Fix Bug Based on Introduction Point
For errors introduced in the coding/unit testing stage, respondents indicated that it was twice as costly to fix the error
if it was not found until the integration phase and five times as costly if it was not detected until post-product release.

Stage Found

Stage Introduced
Requirement

s
Coding/Unit

Testing Integration Beta Testing
Post-product

Release

Requirements 2 4 6 8 10

Coding/unit testing NA 2 4 6 10

Integration NA NA 4 8 16

NA = Not applicable because a bug cannot be found before it is introduced.

Using the distribution of bugs (introduced and found) in Table 6-2
and the hours to fixed each type of bug in Table 6-3, we
calculated the average hours per bug as a function of where the
bug was found (see Table 6-4). For example, on average a bug
found in coding/unit testing takes 2.4 hours to fix, whereas an
average bug found in post-product release takes 13.1 hours to fix.
In addition, using the distribution of where bugs are found we
calculated that the weighted average time to investigate and fix a
bug is 3.9 hours. The average is relatively small because 85
percent of the errors are found during the coding and integration
stages of development, and relatively few are found in beta testing
and post-product release.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-12

Table 6-4. Time to Fix a Bug Based on Discovery Point
Respondents indicated that 45 percent of errors are found in the integration stage of development and it takes an
average of 4.1 hours to correct the errors found in this stage of development.

Location Hours
Distribution of Where

Bugs are Founda
Weighted Average

Hours

Requirements 2.0 5%

Coding/unit testing 2.4 40%

Integration 4.1 45%

Beta testing 6.2 5%

Post-product release 13.1 5%

Total 3.9

aFrom bottom row in Table 6-2.

Based on the cost-per-bug calculations presented above, we
estimated the national costs of an inadequate infrastructure for
software testing for each of the two counterfactual scenarios
described in Section 6.2.1. For the first testing scenario, all bugs
are found in the stage where they are introduced. For the
“feasible” scenario, more bugs are found closer to the stage they
were introduced because of improved testing methods and tools.
The distributions of where bugs are found associated with each
counterfactual scenario are shown in Table 6-5, along with the
current distribution copied from Table 6-4.

The current distribution reflects where bugs are discovered under
the existing inadequate infrastructure for software testing. The
second column shows the distribution if all bugs are discovered in

Section 6 — Transportation Manufacturing Sector

6-13

Table 6-5. Distribution of Bugs Based on Infrastructure
Finding errors earlier leads to a decrease in the total cost of finding and fixing errors.

Location
Current

Infrastructure

All Bugs Found in
Same Stage
Introduced

Feasible
Infrastructure
Improvements

Requirements 5% 15.6% 5%

Coding/unit testing 40% 81.5% 60%

Integration 45% 3.0% 30%

Beta testing 5% 0 3%

Post-product release 5% 0 2%

Average hours per average bug 3.9 2.4 3.2

Percentage reduction from
current infrastructure

38.3% 16.9%

the development stage where they occur. Note that this
distribution is simply the row percentage shown in Table 6-2. The
“feasible” infrastructure is based on survey data. Respondents
were asked what the distribution of the discovery of bugs would
look like with better tools. Under this scenario, some of the bugs
are found sooner in the production process.

As shown in Table 6-5 both testing scenarios shift the distribution
of when bugs are found toward the early stages of development.
The next to last row of Table 6-5 gives the weighted average
number of hours required to find and fix an average bug under
each scenario. This average was calculated by multiplying the
distribution of bug discovery by the average number of hours
spent finding and fixing a bug, as presented in Table 6-4.

The final row gives the percentage change in total time spent per
bug for each of the scenarios relative to the baseline scenario.
This can be interpreted as the percentage of testing resources
saved as a result of an improved infrastructure for software
testing.

The percentage reduction in testing resources presented in
Table 6-5 results from shifting the distribution of when bugs are
found forward. Software developers were also asked if feasible
infrastructure improvements would decrease the time spent

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-14

correcting the error (hours presented in Table 6-4). Most thought
that the hours per bug would decrease; however, they were not
able to quantify this impact. As a result, this potential cost savings
is not included in the following developer impact estimates.

6.2.3 Cost Impacts Per Employee for Software Developers

Once the average percentage change in testing resources was
determined, we normalized cost impacts by company employee to
develop a cost-per-employee metric associated with an
inadequate infrastructure. We then used the cost per employee,
in conjunction with total industry employment, to estimate the total
cost impact on CAD/CAM/CAE and PDM software developers.

A breakdown of testing costs based on information collected
during developer surveys is presented in Table 6-6. The second
column provides current labor and capital expenses for software
testing for a typical company of 10,000 employees. The third and
fourth columns show the cost associated with an inadequate
infrastructure and potential cost reductions associated with
feasible improvements. For a typical company of 10,000
employees the annual change in testing costs ranged from $9.3 to
$21.1 million.

Section 6 — Transportation Manufacturing Sector

6-15

Table 6-6. Developer Testing Costs for a Typical Company of 10,000 Employees

Current
Infrastructure
Testing Costs

The Cost of
Inadequate

Software Testing
Infrastructure

Potential Cost
Reduction from

Feasible
Infrastructure
Improvements

Software testers $54,512, $20,884,7 $9,190,119

Number of testers 400 153 67

Fully loaded wage rate ($/hour) $67.60 $67.60 $67.60

Hardware for testing $40,000 $15,325 $6,743

External testing services $100,000 $38,312 $16,859

After-sale service costs $545,126 $208,848 $91,901

Total annual testing costs $55,198,

Annual change in testing costs $21,147,4 $9,305,701

Percentage reduction from current
infrastructure

38.3% 16.9%

Cost savings as a percentage of
sales 1.8% 0.8%

Labor costs for software testers account for the overwhelming
majority of total testing expenditures. We calculated labor costs
for software testers using company employment (10,000), the
average ratio of testers to total employees (4 percent), and the
average fully loaded wage rate for software testers ($68 per hour).
To this, external testing services, hardware costs, and after-sale
service costs were added to estimate the total testing costs.

The cost associated with an inadequate infrastructure for software
testing is approximately 1.8 percent of the developers’ annual
sales and the feasible cost reductions are 0.8 percent.

6.2.4 Industry-Level Impact

To extrapolate the cost impacts to reflect all developers of
CAD/CAM/CAE and PDM software, we multiplied the cost per
employee by the total employment of companies supplying
software to the transportation manufacturing sector. Industry
employment was estimated to be approximately 85,000 and is

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-16

based on the employment information shown in Table A-3
(CAD/CAM/CAE developers) and Table A-4 (PDM developers).12

National costs impacts for CAD/CAM/CAE/PDM developers due to
an inadequate software testing infrastructure are $373.1 million
(see Table 6-7). The potential cost reductions from feasible
infrastructure improvements are $157.7 million. These estimates
represent 6.0 percent and 2.5 percent of CAD/CAM/CAE/PDM
software sales, respectively.13

Table 6-7. Annual Impact on U.S. Software Developers of CAD/CAM/CAE/PDM Software

The Cost of Inadequate
Software Testing

Infrastructure

Potential Cost Reduction from
Feasible Infrastructure

Improvements

Change in cost per
employment $4,390 $1,856

Total industry employment 85,000 85,000

Industry-level savings
(millions) $373.1 $157.7

6.3 END-USER COSTS IN THE TRANSPORTATION
MANUFACTURING SECTOR
RTI collected data directly from users of CAD/CAM/CAE and PDM
software products to estimate the costs due to an inadequate
infrastructure for software testing. We conducted telephone
surveys of 182 firms in the automotive and aerospace industries.
This subsection provides an overview of the survey process,
descriptive statistics from data collected, and the economic impact
estimates of software errors and bugs for users in the automotive
and aerospace industries.

12Employment for IBM and Oracle Corporation were not included in the PDM

employment totals because the majority of their operations involve non-PDM
products, and using their total employment would have incorrectly inflated the
impact estimates.

13Based on U.S sales of $6.2 billion in 1997 for CAD/CAM/CAE/PDM software
(U.S. Department of Commerce, 1998).

Section 6 — Transportation Manufacturing Sector

6-17

6.3.1 Survey Method

For the end-user survey of automotive and aerospace
manufacturing firms, we used a telephone-Internet-telephone
method in which the respondents were recruited via telephone,
instructed to complete an Internet survey, and telephoned again if
clarification was needed or if the respondents did not complete the
survey in a timely manner. The survey was pre-tested by two
automotive companies. The electronic instruments and resulting
database were housed on RTI’s web site within RTI’s firewall to
ensure security and confidentiality of the information provided by
respondents.

The final survey instrument is presented in Appendix C. Harris
Interactive recruited the users using scripts prepared by RTI. Up
to eight calls were made to locate the appropriate individual at
each company, recruit participants, and follow up if surveys were
not completed within 2 weeks.

The goal of the survey effort was to capture as large a share of
the impacts as possible while ensuring that our survey population
is representative of the industry as a whole. To this end, the total
sampling points were segmented, by industry, into a census of the
original equipment manufacturers (OEMs), a purposeful sample of
the “largest” software users, and a random sample of “medium to
small” size software users. The sample was divided as follows:
two-thirds surveys for the automotive industry and one-third for the
aerospace industry because of the larger number of firms in the
automotive industry relative to the aerospace industry.

We used the dollar value of sales for each of the companies as
the size metric and stratified the sample into three components for
each industry:

Z We selected the major OEMs from each sector to ensure
representation of the largest firms in the sector. If a
random sample had been used, possibly none of the
OEMs would have been included in the analysis simply
because of the research design.

Z We used a purposeful survey of the 50 largest companies
in automotive manufacturing and the 20 largest in
aerospace. We instructed Harris Interactive to recruit as
many of these large companies as possible to capture as
many of the first-tier suppliers as possible.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-18

Z We then rounded out the survey with a random survey of
approximately mid- to small-sized automotive institutions
and mid- to small-sized aerospace institutions. This group
provided a representative sample of all other suppliers in
the industries.

6.3.2 Survey Response Rates and Industry Coverage

RTI contacted 752 companies in the automotive industry and 224
aerospace companies for a total of 976 contacts. Out of the 976
companies contacted, appropriate contacts were identified at 644
(68 percent) companies, and slightly over 50 percent of these
contacts agreed to fill out the survey. From the recruited
participants, 179 completed the surveys and returned them to RTI.
Table 6-8 provides a full description of the number of firms
contacted, the recruitment rates, and completion rates of the
survey within each of the two industries.

Table 6-9 shows the extent of industry coverage from the 179
completed surveys based on domestic employment within the
automotive and aerospace industries.14 The automotive industry
includes manufacturers of motor vehicles (NAICS 3361), motor
vehicle bodies and trailers (NAICS 3362), and motor vehicle parts
(NAICS 3363). Based on these NAICS codes, the automotive
sector consists of 8,385 firms with combined revenues of
$420.6 billion. As Table 6-9 shows, the survey conducted by RTI
captures slightly over 33 percent of the total domestic industry
employment.

14The ideal weighting mechanism would have been the number of engineers that

use the CAD/CAM/CAE software in each industry. However, these data were
not available, so total employment was chosen as the closest proxy.

Section 6 — Transportation Manufacturing Sector

6-19

Table 6-8. Transportation Equipment Industry Survey Completion Rates

Sample Type
Companies
Contacted

Identified
Appropriate

Contacts

Successful
Recruits

(Recruitment
Rate)

Completed
Surveys

(Completion
Rate per
Recruit)

Automotive

OEMs 3 3 1 1

Large institutions 131 108 76 72

Small and medium institutions 618 378 201 74

Aerospace

OEMs 6 6 2 1

Large institutions 48 36 19 17

Small and medium institutions 170 116 68 14

Total 976 644 367 179

Table 6-9. Industry Coverage by Employment

Sample Type

Total Industry
Employmenta
(thousands)

Completed Surveys
Employment
(thousands)

Percentage of
Industry

Automotive

Small: less than 500b 473.9 16.0 3.4%

Large: greater than 500 1,925.6 775.9 40.3%

Total 2,399.47 791.9 33.0%

Aerospace

Small: less than 500b 66.7 3.8 5.7%

Large: greater than 500 733.4 301.5 41.1%

Total 800.1 305.3 38.2%

aDomestic employment of automotive/aerospace design and manufacturing activities.
bShare of employment at companies with fewer than 500 employees is based on Small Business Administration

(SBA) census.

The aerospace industry includes aerospace product and parts
manufacturers (NAICS 3364). The population consists of 1,810

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-20

firms with combined revenues of $25.2 billion. The survey
captures slightly over 38 percent of total industry employment.

The total employment shown in Table 6-9 provides the national-
level weights used to extrapolate the per-employee impact
estimates provided in Section 6.3.4.

6.3.3 Survey Findings

For the 179 survey respondents in the automotive and aerospace
industry, companies averaged approximately 6,500 employees
per firm with average sales of almost $1.4 billion. Not surprising,
the mean was much higher than the median because of the
skewing of the data by several large OEMs and first-tier suppliers.

Table 6-10 lists the various software products that the survey
respondents reported using for CAD/CAM/CAE or PDM activities.
The most commonly reported software products were AutoCAD,
CATIA, ProEngineers, Unagraphics, and IDEAS. The average life
expectancy for these software products was 7 years, and the
majority of them were installed between 1995 and 2001.

Companies responded that they maintained an average of 67
employees (full-time equivalents [FTEs]) involved in operating and
supporting CAD/CAM/CAE systems and an average of 125
employees supporting PDM systems. However, one of the largest
companies indicated that it had 800 CAD/CAM/CAE staff and
3,000 PDM staff members. These figures include only the
engineers using the CAD/CAM/CAE and PDM software and do
not include the information technology and software support staff
who provide maintenance and upkeep.

Incidence and Costs of Software Errors and Bugs

Several respondents indicated that they conduct all of the job
tasks using the software; hence, when a failure occurs, the
potential ramifications are significant because an entire firm or
division might have to shut down while the problem is remedied.

Approximately 60 percent of the companies providing information
on software errors and bugs indicated that they had experienced
major software errors in the previous year. The remaining
40 percent of the companies said they did not experience any

Section 6 — Transportation Manufacturing Sector

6-21

major software errors over the past year and that minor errors
were quickly corrected with little to no cost.

Table 6-10. Reported Software Products

Software Product Vendor/Provider Frequency
7.0.7 1
Abaqus/STD Hibbit, Karlsson & Sorensen, Inc. 3
ACAD 2
Advantage 1
Alias Wavefront Studio 9.6 Alias Wavefront 1
ANSYS ANSYS, Inc. 1
Anvil Express Manufacturing and Consulting Services, Inc. 2
AutoCAD Autodesk, Inc. 48
Autodesk Inventor Autodesk, Inc. 1
AutoManager Workflow Cyco Software 1
CADDS5 PTC 2
Cadkey Cadkey Corp. 7
Cadra SofTech 1
Cam 1
CATIA Dassault Systemes 33
CENTRA Centra Software 1
Desktop 1
Edge 1
ESPRIT DP Technology Corp. 1
HyperMesh Altair Engineering 1
ICEM/Surf ICEM Technologies 1
IDEAS SDRC 14
Intralink DSQ Software, Ltd. 1
Inventor Autodesk, Inc. 1
IPD IPD Software Systems 1
IronCAD IronCAD 2
LS_DYNA Livermore Software Technology Corp. 1
MARC MARC Analysis Research Co. 1
Master Cam CNC Software, Inc. 4
MathCAD Math Soft Engineering & Education, Inc. 1
Matrix 3
Mechanical Desktop (Autodesk) Autodesk, Inc. 6
Mechanica PTC 1
Medina Debis Systemhaus 1

(continued)

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-22

Table 6.10. Reported Software Products (continued)

Software Product Vendor/Provider Frequency
Metaphase SDRC 1
MicroCADAM MicroCADAM, Inc. 2
MicroStation Bentley Systems, Inc. 1
One 3
Optimation Mentum Group 1
Orcad Cadence Design Systems, Inc. 1
Parametric Technology PTC 1
Patran/Nastran Noran Engineering, Inc. 4
PDGS 4
PRO ENGINEER PTC 29
Pro-Intralink PTC 1
SDRC SDRC 4
Shop Data Systems 1
SmarTeam SmarTeam Design Group 1
Solid 1
Solid Edge UGS 2
SolidWorks UGS 7
STAR-CD CD Adaptco Group 1
SurfCAM Surfware, Inc. 1
UGS UGS 24
VeriBest VeriBest ISD 1
VersaCad Archway Systems, Inc. 1
Visual 1

An unexpected finding was that approximately two-fifths of the
companies reported no major software errors and that minor
errors were quickly corrected with little to no cost. This finding
could be a result of several factors. First, the companies truly did
not encounter any software errors using CAD/CAM/CAE/PDM
software.

Second, the companies had software errors but did not recall
them or the respondent was not aware of them. Third, the
companies had errors but did not feel comfortable reviewing this
information. Because of the potential underestimation of the true
incidence of errors, the economic impacts provided below should

Section 6 — Transportation Manufacturing Sector

6-23

be considered a conservative estimate of the total cost of software
errors and bugs.

For the respondents that did have errors, they reported an
average of 40 major and 70 minor software bugs per year in their
CAD/CAM/CAE or PDM software systems (see Table 6-11). Most
respondents indicated that the software problems they
experienced in 2000 were typical of other years.

Table 6-11. Incidence and Costs of Software Bugs

Firms Experiencing Errors
Firms Experiencing No

Errors

Impact Categories

Percentage of
Firms Reporting

Errors

Average of
Firms

Responding
Percentage of Firms
Reporting No Errors

Number of major errors 61% 39.7 39%

Repair cost per bug (labor
hrs)

268.4

Lost data per bug ($) $604,900

Delayed new service
introduction (months)

1.5

Number of minor errors 78% 70.2 22%

Costs per bug $4,018,588

Typical problems encountered due to bugs were

Z production and shipment delays,
Z system down time,
Z loss of customer confidence,
Z customer dissatisfaction in regards to timing, and
Z lost clients.

Most respondents reported that the software bugs only temporarily
delayed transactions. Five companies indicated that they had lost
reputations and two companies indicated that they lost market
share as a result of a software error. Forty-two respondents said
that they experienced delayed product or service introduction as
the result of a software error. The remaining 20 respondents said
that they had no market share or reputation loss. Thirteen firms

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-24

reported an average loss of sales of $105,100 as a result of
software errors.

Software Life-Cycle Costs

Companies in the automotive and aerospace industries were
asked about the life-cycle costs of CAD/CAM/CAE and PDM
software. Table 6-12 summarizes the total costs of life-cycle
activities, including software purchase decisions, installation and
acceptance testing, annual maintenance, and redundant system
costs. The last column in Table 6-12 indicates the percentage of
these expenditures that is due to software errors and bugs. This
percentage reflects the average cost savings that a typical firm
would receive if the developer found all software bugs prior to
release of the software product. This percentage reduction
represents an upper bound of the benefits from an improved
software testing infrastructure.

Table 6-12. Average Company-Level Costs of Search, Installation, and Maintenance (Life-Cycle Costs)

Average Cost of Activities ($)

Average Cost Reduction
Associated with Software

Errorsa

Purchase decision $511,907 41.7%

Installation and acceptance $163,115 26.7%

Maintenance $77,896 14.4%

Redundant system costs $17,202.6 100%

aReflects percentage of cost savings from eliminating all software bugs and errors.

Purchase Decision

On average, the companies indicated that they spend 4.9 months
and 1,399 staff hours researching new CAD/CAM/CAE or PDM
software packages before they make a purchase decision. This
represents an expenditure of approximately $511,908.

Fifty-eight percent of respondents said that they could reduce their
search costs if they had better information about the quality of the
software products. These respondents indicated they could
reduce search time by approximately 1.5 months and 582 staff

Section 6 — Transportation Manufacturing Sector

6-25

hours. This leads to an average savings of about $218,250 per
company.

Installation and Acceptance Testing. Companies on average
spend about 564 in-house staff hours and $8,574 in external
consulting services for installation and acceptance testing,
representing about $63,115 per installation. The level of effort
varied greatly, ranging from 1 to 10,000 hours of staff time.
Respondents indicated that errors encountered during installation
were responsible for about one-fourth of their costs.

Annual Maintenance Costs. Maintenance expenditures on
CAD/CAM/CAE or PDM software also varied greatly, ranging from
$1,250 to $2,600,000 in annual expenditures. Most expenditures
were for standard maintenance contracts with the provider of the
software.

Respondents said that maintenance expenditures could be
reduced by about 14.4 percent if software errors and bugs were
eliminated, reflecting an average cost savings of approximately
$10,905 per year.

Redundant System Costs. Approximately half of the companies
indicated that they maintain redundant backup systems after the
installation of new software. On average these systems were
maintained for about 5.6 months at a cost of $3,972 per month.
Thus, the elimination of bugs would represent a savings of about
$17,203 per new system installed for the 50 percent of the
population that maintains redundant systems.

6.3.4 Costs of Bugs and Errors Per Employee

Table 6-13 shows the costs of bugs and errors normalized by
company employment for the cost subcomponents discussed
above. Cost-per-employee impacts were calculated individually
for large and small automotive firms and large and small
aerospace firms to allow for variation by size and industry.15

15Because not all respondents were able to provide information for each cost

subcomponent (e.g., major errors, minor errors, purchase costs), we
calculated an average cost-to-transaction ratio individually for each
subcomponent. The average cost per employee for all subcomponents was
then summed to obtain the total average cost per employee for large and
small automotive and aerospace companies.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-26

For automotive firms with more than 500 employees, the total cost
of software bugs and errors is $241.1 per employee. Minor and
major errors account for 84 percent of the costs. Additional
installation costs associated with bugs accounted for most of the
remaining impacts.

Table 6-13. Costs Per Employee

Company Size
(employees)

Major
Errors

Minor
Errors

Purchase
Decision

Costs
Due to
Bugs

Installation
Costs Due

to Bugs

Maintenance
Costs Due

to Bugs

Redundant
Systems

Costs Due
to Bugs

Total Cost
Due to

Bugs per
Employee

Automotive

Size 1: fewer
than 500

$1,280.8 $81.9 $1.3 $51.6 $49.9 $0.8 $1,466.1

% of costs 87% 6% 0% 4% 3% 0%

Size 2: greater
than 500

$99.3 $121.0 $0.1 $41.6 $15.8 $0.0 $277.8

% of costs 36% 44% 0% 15% 6% 0%

Aerospace

Size 1: fewer
than 500

$649.9 $0.9 $0.2 $48.1 $1,442.3 $0.0 $2,141.4

% of costs 30% 0% 0% 2% 67% 0%

Size 2: greater
than 500

$85.1 $26.9 $0.1 $13.1 $3.7 $0.1 $128.9

% of costs 66% 21% 0% 10% 3% 0%

For automotive firms with fewer than 500 employees, the total cost
increases to $876.2 per employee. Major errors account for close
to three-fourths of these costs.

Aerospace costs per employee were similar in distribution to the
automotive industry. Major and minor errors accounted for the
large majority of costs for large companies. Small companies had
higher total costs per employee, relative to large companies, with
most of the costs resulting from major errors.

Section 6 — Transportation Manufacturing Sector

6-27

It is of interest to note that major errors have a much larger impact
on smaller firms compared to larger firms. Small automotive firms
have a higher major error-per-employee cost compared to large
firms, and major errors account for a much larger share of total
costs per employee.

The differences in the cost-per-employee estimates for large and
small companies are driven by a couple of factors:

Z Smaller firms are less likely to have the in-house staff to
trouble shoot and correct errors as they occur. As a result,
the error typically affects business operations for a longer
period of time and may not be fully corrected the first time.

Z Large companies get higher priority customer support from
software vendors. It is not unusual for a software vendor
to have two to three support staff predominantly assigned
to their major clients. In contrast, smaller customers
typically receive support through call-in help lines where
response time may not be as fast.

These differences imply that smaller firms are more likely to
benefit from an improved infrastructure for software testing.

Typical Company-Level Impacts

Typical company-level impacts were calculated for representative
firms of various sizes to assess whether estimated costs were
“reasonable.” As Table 6-14 shows, an automotive company that
has 100 employees experiences an economic cost of $87,620 per
year due to software bugs and errors. As a company gets larger,
its total cost attributable to software bugs and errors increases
(but not linearly). For an automotive company that has 10,000
employees, its total cost attributable to software bugs and errors is
just under $2.5 million per year. These cost calculations, build up
from subcomponent costs per employee, are consistent with “top
down” estimates provided by several companies in the automotive
industry.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-28

Table 6-14. Company-Level Costs Associated with Bugs for Hypothetical Transportation Company at Different
Employment Levels

Hypothetical Firm Size
(Employment)

Total Company Costs Associated with Software Errors and
Bugs

Automotive

100 $146,614

10,000 $2,777,868

Aerospace

100 $214,138

10,000 $1,289,167

6.3.5 Partial Reduction of Software Errors

The costs in the previous sections reflect the total cost associated
with software errors. Although Table 6-14 generates an estimate
of the total costs attributable to software bugs for different firm
sizes, there is a difference between the total costs of software
bugs and the amount of that cost that can be eliminated with
improved tools. In addition to the feasibility of eliminating all bugs,
there could also be an increasing marginal cost associated with
eliminating bugs from the software development process.

The survey of CAD/CAM/CAE/PDM software users also
investigated how the cost savings associated with an improved
infrastructure for software testing would change with the partial
removal of bugs and errors. Many of our discussions with industry
indicate that it is not feasible or economical for software
developers to produce “bug-free” software. Thus, respondents
were asked what the cost savings would be if their company
encountered a 25, 50, or 75 percent reduction in software errors.

It was anticipated that the rate at which the cost of bugs
decreases as the number of bugs decreases will not be the same
for all of the cost categories. For example, some cost–bug
relationships may be linear (i.e., a 50 percent reduction in bugs
leads to a 50 percent reduction is costs), and some may be
nonlinear (i.e., a 50 percent reduction in bugs may lead to less
than a 50 percent reduction in costs because even a small
number of bugs requires testing, backup systems, etc.).

Section 6 — Transportation Manufacturing Sector

6-29

Table 6-15 presents respondents’ estimates of the percentage
cost reduction associated with different percentage reductions in
bugs for each of the major cost categories discussed above. For
major and minor software bugs, respondents indicated that the
costs generally decline proportionally as the percentage of bugs is
reduced. This implies that the cost per bug is relatively constant.
These costs may be classified mostly as mitigation costs and are
activities in response to errors.

In comparison, the other categories—purchase decision costs,
installation costs, maintenance costs, and redundant system
costs—are mostly avoidance costs. The benefits from reduced
bugs for these categories are relatively flat until a substantial
share (i.e.,

Table 6-15. Cost Reductions as a Function of Bug Reductions

Average Percentage Cost Reduction in CAD/CAM/CAE or PDM
Software for a Given Reduction in Software Bugs

Cost Categories 25% 50% 75%

Major failure costs 18 33 46

Minor failure costs 20 33 48

Purchase decision costs 9 14 20

Installation costs 10 17 23

Maintenance costs 7 11 14

Redundant system costs 4 9 12

75 percent) of the bugs are reduced. In these instances, a small
number of bugs (or threat of bugs leading to failures) still lead to
significant “avoidance” costs.

A 50 percent reduction in bugs and errors is used in the analysis
below to capture the “feasible” testing scenario. This is consistent
with the decrease in the share of errors found in post product
release shown in Table 6-5.16 As presented in Table 6-15, users
indicated that a 50 percent reduction in errors would correspond to

16Post-product release errors decreased from 5 percent under the current

infrastructure to 2 percent under the improved infrastructure.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-30

a 33 percent reduction in major and minor failure costs and
between a 9 to 17 percent reduction in purchase, installation,
maintenance, and redundant systems costs.

6.4 USERS’ INDUSTRY-LEVEL IMPACT ESTIMATES
Industry-level impacts for the automotive and aerospace industry
were estimated by weighting employment-level impacts provided
in Table 6-9 by the domestic industry employment. As shown in
Table 6-16, the industry-level impacts of an inadequate software
testing infrastructure for the automotive and aerospace industries
are estimated to be $1,467.1 million. Potential cost reductions
from feasible infrastructure improvements are $431.5 million.
Small

Table 6-16. Annual Impacts’ Weighted Cost Per Deposits and Loans

Company Size in
Transactions

Bug and
Error Costs

per Employee

Weight
(000s

employees)

The Cost of Inadequate
Software Testing

Infrastructure
($millions)

Potential Cost
Reduction from

Feasible Infrastructure
Improvementsa

($millions)

Automotive

Small $1,466.1 474 $694.8 $220.0

Large $277.8 1,926 $534.9 $157.0

Total automotive $1,229.7 $377.0

Aerospace

Small $2,141.4 67 $142.9 $25.5

Large $128.9 733 $94.5 $29.0

Total aerospace $237.4 $54.5

Total $1,467.1 $431.5

aBased on a 50 percent reduction of errors.

companies account for the majority of cost impacts. In both the
automotive and aerospace industries they represent over half of
the costs.

The “feasible” infrastructure cost savings are less than 50 percent
of the total infrastructure costs because there is not a one-to-one

Section 6 — Transportation Manufacturing Sector

6-31

correlation between the share of bugs removed and the
percentage cost reduction. As discussed in the previous section,
a 50 percent reduction in bugs leads to less than a 50 percent
reduction in costs.

7-1

Financial7 Services Sector

This section investigates the excess costs incurred by software
developers and users in the financial services sector due to an
inadequate infrastructure for software testing. RTI conducted
several case studies of software developers and an Internet
survey of software users to quantify the cost impacts.

Consistent with the transport ion analysis presented in Section 6,
impact estimates were developed relative to two counterfactual
scenarios. The first scenario investigates the cost reductions if all
bugs and errors could be found in the same development stage in
which they are introduced. This is referred to as the cost of an
inadequate software testing infrastructure. The second scenario
investigates the cost reductions associated with finding an
increased percentage of bugs and errors closer to the
development stages where they are introduced. The second
scenario is referred to as cost reduction from feasible
infrastructure improvements.

Table 7-1 presents an overview of the empirical findings. The
total impact on the financial services sector from an inadequate
software testing infrastructure is estimated to be $3.3 billion. The
potential cost reduction from feasible infrastructure improvements
is $1.5 billion. Software developers account for about 75 percent
of the total impact and users account for the remaining 25 percent
of costs.

This section begins with an overview of developers and users of
software in the financial services sector. A more detailed industry

http://www.delloro.com/

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-2

profile is provided in Appendix D. We then present the analysis
approach and survey findings used to estimate cost impacts for

Table 7-1. Cost Impacts on U.S. Software Developers and Users in the Financial Services Sector Due to an
Inadequate Testing Infrastructure ($ millions)

The Cost of Inadequate
Software Testing

Infrastructure

Potential Cost Reduction from
Feasible Infrastructure

Improvements

Software Developers

Router and switch $1,897.9 $975.0

FEDI and clearinghouse $438.8 $225.4

Software Users

Banks and savings
institutions

$789.3 $244.0

Credit unions $216.5 $68.1

Total Financial Services Sector $3,342.5 $1,512.6

software developers and users in Section 7.2 and Section 7.3,
respectively.

7.1 OVERVIEW OF THE USE OF CLEARINGHOUSE
SOFTWARE AND ROUTERS AND SWITCHES IN THE
FINANCIAL SERVICES SECTOR
The financial services sector (NAICS 52) consists of monetary
authorities; credit intermediation, securities and commodity
contracts organizations; and insurance carriers. In 1997 total
revenue for this sector exceeded $2.1 trillion with employment of
approximately 5.8 million.

An increasing share of financial communications are occurring
electronically. In 1999, over $19.5 trillion dollars worth of
transactions occurred electronically, representing a 282 percent
increase since 1989 (NACHA, 2000).

The generic term used to describe the transfer of information
electronically in the financial services sector is Financial Electronic
Data Interchange (FEDI). FEDI transactions not only contain the
information for the transaction that is being processed, but they

Section 7 — Financial Services Sector

7-3

also include the transfer of the financial resources. The
reconciliation of accounts requires using a clearinghouse that
adds a step to the FEDI process that does not exist in generic
Electronic Data Interchange (EDI) transactions.

Computer software and hardware play two important roles in
transferring information in the financial services sector. First,
FEDI and clearinghouse software are used to manage the
information content once it has arrived at its appropriate location.
Second, routers and switches (a combination of software and
hardware) are used to manage the flow of information from one
entity to the next via the Internet and company intranets. This
section provides an overview of electronic transactions in the
financial services sector and describes the software that facilitates
the process.

7.1.1 Overview of Electronic Transactions in the Financial Services
Sector

Financial transaction management is the overarching term used to
describe the flow, monitoring, and control of data across and
within banking institutions. It is defined as the firm’s ability to
control and manage a range of transactions—from foreign
exchange to securities deals—to their reconciliation and
successful resolution. Financial transactions management can be
subdivided into three general activities: financial transactions
reconciliation, financial transactions services, and financial
transactions control.

Z Financial Transaction Reconciliation—The financial
transaction reconciliation software allows the automated
reconciliation of payments, securities, and foreign
transactions. A flexible matching algorithm within each
reconciliation module allows users to set up matching
criteria to optimally meet the needs of partner banks or
brokers, which increases matching rates.

Z Financial Transaction Services—Financial transaction
services include on-line transactions, archiving and
retrieval functionality, and other services to aid the end
user.

Z Financial Transaction Control—Financial transactions
control is software used to develop profiles and govern
access to all functions. Roles and users can be defined
individually or in groups, and user IDs can be assigned to
all actions, providing a full audit trail. Several institutions
can work with the same system independently of each

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-4

other, and firms also have the ability to outsource matching
services, if required.

Firms in the Financial Services Sector

The Census Bureau aggregates firms engaged in financial
transactions into four broad categories by NAICS code.17 Table 7-
2 provides establishment, revenue, payroll, and employment
information for each category.

Table 7-2. Characteristics of Firms in the Financial Services Sector, 1997

Establishments
Revenue
(millions)

Payroll
(millions) Employees

521 Monetary Authorities 42 24,581 903 21,67

522 Credit Intermediation and Related
Activities

166,882 808,810 98,723 2,77

523 Securities, Commodity Contracts, and
Other Financial Investments and Related
Activities

54,491 274,986 71,281 706,05

524 Insurance Carriers and Related
Activities

172,299 1,072 92,230 2,32

Source: 1997 Economic Census, Finance and Insurance Subject Series.

Firms within the Credit Intermediation and Related Activities sector
(522) are the most dependent on software and hardware to
support financial transactions. Sector 522 comprises firms
engaged in financial transactions processing, reserve activities,
and clearinghouse activities. Firms conducting clearinghouse
activities (subsector 52232) are primarily engaged in financial
transaction processing, reserve activities, and liquidity services or
other financial instrument clearinghouse services. Firms in this
sector are engaged in both automated and manual clearinghouse
activities. In 1997, the clearinghouse subsector included over
1,200 firms with over 60,000 employees.

The finance and insurance sector of the economy (sectors 523
and 524) comprises firms whose dominant line of business is
either financial transactions or facilitating those transactions.

17The appendix provides descriptions for each of the NAICS codes in sector 52.

Section 7 — Financial Services Sector

7-5

Transactions are broadly defined to include the creation,
liquidation, or change of ownership of a financial asset.

7.1.2 Software Used by Financial Services Providers

Two main types of software are used to manage the exchange of
information in the financial services sector: FEDI software and
clearinghouse software. FEDI software manages the flow of
information across firms, and clearinghouse software manages
the flow of funds between financial institutions. Clearinghouse
software balances interfirm transactions such as payrolls, travel
and expense reimbursements, pensions, and dividends.
Appendix D provides details on the characteristics and attributes
of these transactions.

Major Producers of FEDI and Clearinghouse Software

When a firm is deciding on what FEDI or clearinghouse software
to implement, it can either develop its own software, have the
software custom built, or purchase a commercial application.
Although some FEDI and clearinghouse software applications are
commercially available, they often have to be adapted and altered
to fit with the firm’s existing legacy system.

The FEDI and clearinghouse software market has a large number
of both large and small producers. The most significant role in the
FEDI and clearinghouse software market is played by the Federal
Reserve. The Federal Reserve Financial Services provides a
version of FEDI (FEDEDI) at no additional cost for use by financial
institutions, service bureaus, or other entities that have an
electronic connection to the Federal Reserve. However, many
large banks and credit unions purchase monolithic or highly
customized FEDI and clearinghouse software specifically
designed for their institution. This provides a niche for companies
focused on customized software services. Other FEDI and
clearinghouse software producers provide more generic, out of the
box software. Some of the companies that play a significant role
in this market are Check Free Corporation, Software Dynamics,
Inc., and Fundtech Corporation.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-6

Impacts of Inadequate Testing

The economic cost associated with inadequate FEDI and
clearinghouse software can be substantial (System
Transformation, 2000). In some cases, software failures prevent
transactions from occurring; in other cases, expensive work-
arounds for failures need to be implemented. Examples of the
problems and associated costs resulting from FEDI and
clearinghouse software failures include:

Z data interchange interruptions or errors,
Z credit card processing failure in the banking system, and
Z trading system failure.

7.1.3 Software Embedded in Hardware Used to Support Financial
Transactions

In addition to software used to support FEDI and clearinghouse
transactions, software is also embedded in hardware that is used
to facilitate the physical transfer of electronic information. The
process of passing information from one user to another is called
routing. The two key pieces of technology involved in routing are
routers and switches, both of which are combination of hardware
and software that manage the flow of information. However, the
software used to manage the flow of information is often
inoperable across firms, routers, and area networks. Different
products use different languages and different algorithms when
making decisions about the passage of information. These
differing decision-making processes create an interoperability
problem.

Appendix D describes how information is passed through an
internetwork to get from one user to another, including how
software is used to route information.

Major Producers of Routers and Switches

Four major companies dominate the market for routers that are
used to transfer information: Cisco, Nortel, Lucent, and 3Com.
Each major company uses its proprietary software to write
switching and routing algorithms for use in its routers. Table 7-3
presents a list of companies and the proprietary software they
use.

Section 7 — Financial Services Sector

7-7

Table 7-3. Router Market Shares of Major Firms

Company
Number of

Router Types

Total Sales
(millions in 3rd quarter,

1999)
Market
Share Software Product

Cisco 16 $1,360 72% IOS, ConFig Maker

Nortel 8 $51 3% Preside

Lucent $278 15% Hybrid Access

3Com 5 $196 10% Enterprise OS Software

Source: The Dell’Oro Group. 2001. <www.delloro.com>.

The measure of the number of router types that each company
has is a broad measure of product categories. Numerous
potential configurations and upgrades are available to the end
user within each broad router type, effectively increasing the
number of available products. We used total sales in the third
quarter of 1999 to get a common metric for the relative share of
the market for routers and switches held by each firm.

Current Testing Inefficiencies

The rapid growth in the sales of switches and routers and the
significant technological improvements that have occurred in the
second half of the 1990s have created routers and switches that
may not interoperate. Insufficient testing of the software
algorithms used in operating the routers and switches is
contributing to the lack of interoperability.

Failures in the software used to run internetworks, which can be
attributed to inadequate testing, can cause serious information
delivery problems. Attributes of the software used to run
internetworks that are of concern to developers are connectivity,
reliability, network management, and flexibility. Connectivity is a
challenge because various sites use different types of technology
that may operate at different speeds. Reliability is a concern
because individual users need information from other users in a
timely manner. Network management ensures that centralized
support is available to all users. Flexibility deals with the ability to
adapt, add on to, and improve the network.

Failure on any of these measures leads to several potential
impacts, including the following:

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-8

Z decreased speed of information delivery,
Z failure of information delivery,
Z inefficient router algorithms,
Z lack of robust routers,
Z reduced security of Internet and intranet traffic, and
Z inability to run specific programs.

7.2 SOFTWARE DEVELOPER COSTS IN THE FINANCIAL
SERVICES SECTOR
We conducted interviews with four developers of router and
switch, FEDI, and clearinghouse software. Companies eagerly
admitted that the current set of tools was inadequate for finding all
of the bugs that exist in an efficient manner before a new product
is shipped to a customer. All agreed that an improved testing
infrastructure could reduce testing costs and accelerate the time
to market for their products. Additionally, they said that improved
testing products would decrease the amount of customer support
required and increase the value of the product they produce.

Clearinghouse software developers were the most reluctant to
provide information on their testing procedures or the level of
resources devoted to finding and fixing software errors. In most
instances developers said that information on testing expenditures
and errors discovered were confidential because they reflected
detailed information about their product development process. In
addition, whereas most companies track the number and location
of bugs that emerge, few companies track their expenditures on
testing and system costs.

Section 7 — Financial Services Sector

7-9

All companies agreed an improved system for testing was needed
that would be able to track a bug back to the point where it was
introduced and then determine how that bug influenced the rest of
the production process. Respondents said that they knew about
bugs when they emerged but had the most difficulty in tracking
them down to their inception point. Respondents noted that the
technology they were working with lacked the ability to accomplish
this.

Respondents thought that an improved infrastructure would
consist of tools that are able to spot an error as close to when it is
introduced as possible. Their ideal testing infrastructure would
support close to real time testing where testers could remedy
problems that emerge right away rather than waiting until a
product is fully assembled. Respondents also indicated that they
would be willing to purchase and install new products that
accomplished this. They said that they waste valuable resources
later in the production process because of missed software bugs
and that any improved infrastructure would be effective at
reducing testing costs. The major benefit that they saw from an
improved infrastructure was direct cost reduction in the
development process and a decrease in post-purchase customer
support. An additional benefit that respondents thought would
emerge from an improved testing infrastructure is increased
confidence in the quality of the product they produce and ship.
The major selling characteristic of the products they create is the
certainty of that product to accomplish a particular task. Because
of the real time nature of their products, the reputational loss can
be great.

In addition to FEDI and clearinghouse software developers, we
spoke with three router and switch producers who develop a
significant amount of software that is embedded in the
infrastructure to support financial services transactions. These
companies indicated that testing costs would decrease
dramatically if improved software testing tools could find more
bugs prior to product release. The primary testing need for these
companies is the ability to cost-effectively generate more traffic
(e.g., calls per second, requests for data per second) in a timely
manner to simulate realistic operating scenarios during testing and
debugging the traffic levels experienced at customers’ facilities.

Their ideal testing
infrastructure would
support close to
real time testing
where testers could
remedy problems
that emerge right
away rather than
waiting until a
product is fully
assembled.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-10

This would lead to more bugs being detected during integration
versus at the customer’s site.

Installation support is an important service provided by router and
switch companies. Installation support typically involves having
the developer’s employees at the customer’s site, providing
assistance over the telephone, and remotely manipulating
products (using data communication lines) at the customer’s site.
Companies said that better testing tools and methods used during
software development could reduce installation expenditures by
30 percent.

Forty percent of these companies’ after-sales service costs are
related to bugs found by customers during business operations.18

Developers said that better software testing tools could reduce
this percentage to 10 percent.

The remainder of this subsection quantifies the developer cost
savings due to finding bugs and errors closer to when they are
introduced for the financial services sector based on the empirical
results from the router and switch developer surveys. We used
the estimated costs per employee as representative of the
economic impact of an inadequate infrastructure for software
testing on all software developers supporting the financial services
sector.

7.2.1 Industry Surveys

As with the surveys of software developers supporting the
transportation sector, in determining the costs associated with an
inadequate infrastructure for the financial services sector we made
two key assumptions:

Z The same number of bugs still occurs regardless of the
infrastructure used or the quality of that infrastructure.
Bugs are attributed to human error and will continue to
occur.

Z An improved infrastructure does not change where bugs
are introduced. This again is assumed to be a function of
human error.

Data collection focused on the impact an improved infrastructure
would have on lowering the cost of testing and fixing bugs and

18The remaining 60 percent of after-sales service costs are related to user error

or other problems not related to defective software.

Software developers said
that better software testing
tools could reduce after-
sales service costs by
30 percent.

Section 7 — Financial Services Sector

7-11

errors and finding the bugs closer to the time they were
introduced.

We collected information to support the evaluation of two
counterfactuals scenarios. The first scenario investigates the cost
savings developers would realized if all bugs and errors were
found in the same development stage that they were introduced.
The second scenario investigates the impact of a partial reduction
in software bugs and errors.19

7.2.2 Survey Findings

The metrics for quantifying the impact of inadequate software
testing methods and tools are discusses in Section 5. Following
this approach, the key pieces of information collected from the
surveys were

Z the current distribution of where bugs are introduced and
found in software,

Z the time required to fix a bug given this distribution, and
Z the expectations of how an improved infrastructure would

testing activities.

To collect the information to estimates cost impacts RTI
conducted on-site, telephone and internet interviews with software
testers at companies that manufacture routers, switches and
gateways that support financial transactions. The questionnaire
used to collect the information is presented in Appendix E.

Based on the survey findings, Table 7-4 shows where software
bugs are found based on the introduction point. For example,
about 7 percent of bugs are introduced and found in the
requirements stage. However, 3 percent of bugs are introduced in
the requirements stage and not found until post-product release.
As shown in Table 7-4, 58 percent of errors are introduced in the
coding/unit testing stage with many of these errors not found until
latter stages (integration stage for example).20

19See Section 6.2.1 for a more detailed discussion of the two counterfactual

scenarios.
20Note that we are investigating only bugs and errors introduced in the software

product development process. Errors introduced during beta testing or
implementation are not included in the distributions in Table 7-4. However,
developers said that it is often difficult for the testers and software engineers
to determine where the user introduced the bug or as part of the development
process.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-12

Table 7-4. Distribution of Bugs Found Based on Introduction Point

Stage Found

Stage Introduced
Requirement

s
Coding/Unit

Testing Integration
Beta

Testing

Post-
product
Release

Row
Percentage

Requirements 6.7% 9.5% 6.1% 5.3% 2.8% 30.3%

Coding/unit testing NA 32.2% 14.3% 6.3% 5.0% 57.8%

Integration NA NA 7.9% 1.8% 2.3% 11.9%

Column
percentage 6.7% 41.7% 28.3% 13.3% 10.0% 100.0%

NA = Not applicable because a bug cannot be found before it is introduced.

Once the distribution of bugs is determined, the next step is to
determine the costs of fixing a bug based on the point of
introduction. As discussed above, the costs of fixing a bug are
greater the farther away from the point of introduction is the point
at which the bug is discovered. This occurs for several reasons.
First, it is more difficult to find a bug the farther away from the
point of introduction. Second, more code has to be rewritten the
farther away from the point of introduction that the bug is found.

Section 7 — Financial Services Sector

7-13

Table 7-5 shows resources (costs) in terms of the average
number of tester hours required to investigate and fix a bug based
on the survey responses. The first row of Table 7-5 shows that for
bugs introduced in the requirement stage, it is increasing costly to
find and fix them the longer they remain undetected. For
example, to correct a requirements error not found until the post
production stage it is approximately 15 time more costly than if the
error would have been found back in the requirements stage
where it was introduced.

Table 7-5. Hours to Fix Bug based on Introduction Point

Stage Found

Stage Introduced
Requirement

s
Coding/Unit

Testing Integration Beta Testing
Post-product

Release

Requirements 1.2 8.8 14.8 15.0 18.7

Coding/unit testing NA 3.2 9.7 12.2 14.8

Integration NA NA 6.7 12.0 17.3

NA = Not applicable because cannot find a bug before it is introduced

Using the distribution of bugs (introduced and found) in Table 7-4
and the hours to fixed each type of bug in Table 7-5, we are able
to calculate the average hours per bug as a function of where the
bug was found (see Table 7-6). For example, on average a bug
found in coding/unit testing takes 4.9 hours to fix, whereas an
average bug found in post-product release takes 15.3 hours to fix.
In addition, using the distribution of where bugs are found we
calculate that the overall average time to investigate and fix a bug
is 17.4 hours.

Based on the cost-per-bug calculations presented above, the
national costs of an inadequate infrastructure for software testing
are estimated for each of the two counterfactual scenarios
described in Section 7.2.1. For the first scenario all bugs are
found in the stage where they are introduced. For the “feasible”
scenario, more bugs are found closer to the stage they were
introduced because of improved testing methods and tools. The
distributions of where bugs are found associated with each

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-14

counterfactual scenario are shown in Table 7-7, along with the
current distribution copied from Table 7-6.

Table 7-6. Time to Fix a Bug Based on Discovery Point

Location Hours

Current Distribution of
Where Bugs are

Founda
Weighted Average

Hours

Requirements 1.2 7%

Coding/unit testing 4.9 42%

Integration 9.5 28%

Beta testing 12.1 13%

Post-product release 15.3 10%

Total 17.4

aFrom bottom row in Table 7-11.

Table 7-7. Shift in the Distribution of Where Bugs are Found Based on Infrastructure

Location
Current

Infrastructure

All Bugs Found in
Same Stage as

Introduced

Feasible
Infrastructure
Improvements

Requirements 7% 30% 7%

Coding/unit testing 42% 58% 57%

Integration 28% 12% 27%

Beta testing 13% 0% 5%

Post-product release 10% 0% 5%

Average hours per average bug 17.4 8.5 13.3

Percentage reduction from current
infrastructure

45.6% 24.3%

The current distribution reflects where bugs are discovered under
the existing inadequate infrastructure for software testing. Under
the first scenario, all bugs are discovered in the development
stage where they occur. Note that this distribution is simply the
row percentage shown in Table 7-4. The “feasible” infrastructure
scenario is based on survey data. Respondents were asked what

Section 7 — Financial Services Sector

7-15

the distribution of the discovery of bugs would look like with better
tools. Under this scenario, some of the bugs are found sooner in
the production process.

As shown in Table 7-7 both scenarios shift the distribution of when
bugs are found toward the early stages of development. In
addition, respondents said that with feasible infrastructure
improvements it would take approximate 15 percent less time to
fix bugs (holding the distribution constant) because they would
have more information as to the location of the error in the source
code. Both of these effects are included in the change in the
average number of hours required to find and fix an average bug
under each scenario (next to last row of Table 7-7). For the
feasible scenario, the average time to find and fix a bug dropped
from 17.4 to 13.3 hours. If all bugs are found in the same stage
as introduced, the average time dropped to 8.5 hours.

The final row in Table 7-7 gives the percentage change in total
time spent per bug for each of the scenarios relative to the
baseline scenario. This can be interpreted as the amount of
testing resources saved under the two counterfactual scenarios.

7.2.3 Cost Impacts Per Employee for Software Developers

Once the average percentage change in testing resource is
determined, we normalized cost impacts by company employee to
develop a cost-per-employee metric associated with an
inadequate infrastructure. We then used the cost per employee
used in conjunction with total industry employment to estimate the
total cost impact on the software developers of FEDI,
clearinghouse, and router and switch software.

Table 7-8 presents a breakdown of testing costs based on
information collected during the case study. The second column
provides current labor and capital expenses for software testing
for a company of 10,000 employees. The third and fourth
columns show the total cost of an inadequate infrastructure and
the cost savings associated with feasible infrastructure
improvements. We calculated the cost savings using the
45.6 percent and 24.3 percent reductions in testing resources
calculated presented in Table 7-7.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-16

Labor costs for software testers account for the overwhelming
majority of total testing expenditures. We calculated labor costs
for software testers using company employment (10,000), the ratio
of testers to total employees (10.5 percent), and the average fully
loaded wage rate for software testers ($68 per hour). To this,
external testing services, hardware costs, and after-sale service
costs were added to estimate the total testing costs.

Table 7-8. Developer Testing Costs for a Typical Company of 10,000 Employees

Current Testing
Costs

The Cost of
Inadequate

Software Testing
Infrastructure

Potential Cost
Reduction from

Feasible
Infrastructure
Improvements

Software testers $104,400, $49,038,6 $25,121,96

Number of testers 766 360 184

Fully loaded wage rate ($/hour) $68 $68 $68

Software and hardware for testing $13,230, $5,755,1 $3,271,98

External testing services $3,527, $1,858,8 $809,923

After-sale service costs $2,403, $1,266,6 $551,888

Total annual testing costs $123,562,

Annual change in testing costs $57,919,7 $29,756,0

Cost savings as a percentage of
sales 1.8% 0.9%

The cost associated with an inadequate infrastructure for software
testing are approximately 2 percent of the developers’ annual
sales and potential cost reductions from feasible improvements
are about 1 percent of sales.

7.2.4 Industry-Level Impacts

To extrapolate the cost impacts to reflect all developers of
financial services software, we multiplied the cost per employee by
the total employment of companies supplying software to this
industry segment. Industry employment for router/switch software
producers and for FEDI/clearinghouse software developers was
obtained from publicly available databases (Standard and Poor's

Section 7 — Financial Services Sector

7-17

Net Advantage and Reference USA) and individual company 10K
reports. Table 7-9 shows that the weighted industry-level impacts
for an inadequate software testing infrastructure are approximately
$1.9 billion for router/switch software developers and $0.4 billion
for FEDI/Clearinghouse software developers. The potential cost
reductions from feasible infrastructure improvements are $1.0 and
$0.2 billion, respectively.

Table 7-9. Annual Impact on U.S. Software Developers Supporting the Financial Services Sector

The Cost of Inadequate
Software Testing

Infrastructure

Potential Cost Reduction from
Feasible Infrastructure

Improvements

Routers and Switches Software

Change in cost per employment $5,792 $2,976

Total industry employment 327,676 327,676

Industry-level savings (millions) $1,897.9 $975.0

FEDI and Clearinghouse
Software

Change in cost per employment $5,792 $2,976

Total industry employment 75,760 75,760

Industry-level savings (millions) $438.8 $225.4

7.3 SOFTWARE USER COSTS IN THE FINANCIAL
SERVICES SECTOR
To estimate the costs due to an inadequate testing infrastructure
for software end users, RTI collected data directly from banks and
credit unions that use FEDI and clearinghouse software products.
This subsection presents an overview of the survey process,
descriptive statistics from data collected, and the economic impact
estimates of software errors and bugs for users in the financial
services sector.

7.3.1 Survey Method

The end-user survey employed a telephone-Internet-telephone
survey method in which the respondents were recruited via

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-18

telephone, instructed to complete an Internet survey, and
telephoned again if clarification was needed or if the respondents
did not complete the survey in a timely manner. The survey was
pre-tested by the project consultants and two financial service
companies. The electronic instruments and resulting database
were housed on RTI’s web site within RTI’s firewall to ensure
security and confidentiality of the information provided by
respondents.

RTI developed the survey instrument and samples. Appendix E
includes the final survey instrument. Harris Interactive recruited
the users using scripts prepared by RTI. Up to eight calls were
made to locate the appropriate individual at each company, recruit
participants, and follow up if surveys were not completed within
2 weeks.

Thousands of firms may be significantly affected by an inadequate
infrastructure for software testing. The goal of the survey effort
was to capture as large a share of the impacts as possible while
ensuring that our survey population is representative of the
industry as a whole. To this end, the objective of the survey was
to complete interviews with of the 50 “largest” software users and
100 “medium to small” size software users. Size was defined by
either volume of electronic transactions or by the sum of
depository and loan transactions.21

7.3.2 Survey Response Rates and Industry Coverage

Over 1,400 end users were contacted to fill out the RTI end-user
survey for the financial services sector. Table 7-10 provides the
number of firms that were contacted and recruited and the number
of completed surveys. For slightly over 50 percent of company
contacts we were able to identify and speak with the individual in
charge of maintaining their FEDI or clearinghouse software. Of
these, 37 percent were successfully recruited to participate in the

21Volume of electronic transactions was the preferred method for identifying

“large” companies because this metric is closely correlated with the impact of
inadequate software testing. The top 50 companies by electronic transaction
volume ($$) were obtained from American Banker.com. For companies
where total electronic transaction volume was not available, we used the sum
of depository and loan transactions obtained from Federal Deposit Insurance
Corporation public filings as the measure to stratify the sample by company
size.

Section 7 — Financial Services Sector

7-19

survey. One-third of the recruited participants returned completed
survey instruments to RTI.22

Table 7-10. Financial Industry Survey Completion Rates

Sample Type
Companies
Contacted

Identified Appropriate
Contact

Successful
Recruits

Completed
Surveys

Financial top tier 40 26 8 2

Financial random 1,375 722 273 96

Total 1,415 758 281 98

We successfully contacted 40 of the 50 largest companies. Out of
the 40 large companies contacted, the appropriate individual was
identified for 26 companies. Of the 26 companies, eight agreed to
fill out the survey and two returned completed surveys.

In addition to the large companies, from a random stratified
sample, we contacted 1,375 medium to small companies. For 722
the appropriate IT contact was identified. We recruited 273 of
these companies to participate in the study, and 96 completed
surveys were returned to RTI.

Table 7-11 provides information on the extent of the industry
coverage from the survey. The financial services sector
population from which the survey sample was drawn is defined as
commercial banks, saving institutions, credit unions, and other
entities included in NAICS codes 5221. The population consists
of 19,308 firms with a combined depository and loan transaction

22The relatively low recruitment and completion rates for the survey of

companies in the financial services sector are the result of several issues.
First, the direct impact that software errors have on this sector’s final products
and services. Within the financial services sector, transactions occur in real
time. Once a bug occurs, customers of that particular financial services
sector are directly affected through loss of service. Because software failures
are highly publicized, companies in the financial services sector are reluctant
to discuss these issues, even if the source of the error is inadequate testing
by software vendors. Second, all of the firms in the financial services industry
provide almost identical services. What gives the firm its competitive
advantage is not the activities that it conducts, but rather the software tool it
uses to conduct them. Because the software that they use is so instrumental
to defining their competitive advantage, they are reluctant to discuss any
potential failures of that product.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-20

amount of $8,718 trillion. Approximately 92 percent of those
transactions are associated with commercial banks and saving
institutions. This population excludes firms that solely provide
securities brokerage services, commodity contracts brokerage,
and securities commodity exchanges services.

Industry coverage is determined by comparing by the sum of
depository and loan transactions from surveyed respondents to
industry totals. In addition, the survey respondents and industry
are separated into banks and credit unions. Table 7-11 shows the
coverage of the financial services sector represented by the
completed surveys. Companies completing the survey represent
14 percent of the financial services sector in terms of transaction

Sample Type

Total Industry
Transactions
($ millions)

Completed Surveys
Transactions
($ millions)

(% of industry)

Deposits
Banks 4,244 491,348

(12%)

Credit unions 379,200 7,698
(2%)

Loans
Banks 3,793 754,590

(20%)

Credit unions 301,300 2,258
(1%)

Total
transactions

8,718 1,255,888
(14%)

amounts. The percentage covered is primarily due to the
completed surveys of large banks and savings institutions that
account for a large share of the industry depository and loan
transactions.

The sum of depository and loan transactions in Table 7-11 also
provides the appropriate weights to extrapolate the sample
responses to the industry-level impact estimates.

Table 7-11. Industry Coverage

Section 7 — Financial Services Sector

7-21

7.3.3 Survey Findings

Survey respondents have an average employment of 3,970
employees and average sales of approximately $29 million. Most
respondents provide a variety of services. Forty percent of firms
reported providing credit intermediation services; 63 percent
provide securities, commodity contracts, and other financial
services; and 22 percent sell insurance. An additional 33 percent
of firms reported providing other financial services or products.

Table 7-12 lists various software products that the sample
participants reported using for electronic data exchange. The
most commonly reported products were software products
provided by the Federal Reserve Financial Services. The average
life expectancy for these software products was 1.5 years, and the
majority of them were installed between 1983 and 2001. Most
users of the software say that they have been using the same
system for 1 to 10 years.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-22

Table 7-12. Reported Software Products

Software Product Vendor/Provider Frequency
ACH Federal Reserve Financial Services 2
Bank on It Transact CTX Option 1
Bulkdata Federal Reserve Financial Services 1
CBS Origination Control 1
Digital Insight Digital Insight 2
Digital Unix Compaq 1
ECS 1
EPN PC Aims Electronic Payments Network 1
FEDEDI Federal Reserve Financial Services 11
FEDI Federal Reserve Financial Services 6
Fedline Federal Reserve Financial Services 14
FedPlu$ Fundtech Corporation 1
FiServ Galaxy 2000 Technical Programming Services Inc. 2
Fundtech Fundtech Corporation 2
GMI Software GMI Software 1
International Cash Management IBOS 1
ITI Premier Bank Application Software Dynamics, Inc. 3
Jack Henry & Associates Jack Henry & Associates 1
Kirchman Financial Software Kirchman Corporation 1
MISER Miser Software 1
Mercator for EC Mercator 1
Open Solutions Open Solutions, Inc. 1
Modern Banking Systems Modern Banking Systems, Inc. 1
Pay Systems International Credit 1
PEP Check Free Corporation 7
PC AIMS 1
Pershing Net Xchange Pro Advantage Capital Corporation 1
Shazam Vector 1
Sterling Bankers ACH 1
Sterling Commerce Connection SBC Communications 1
Trading Partners 1
Xp Software 1
VISA Direct Exchange Open File Delivery VISA Corporation 1
Federal Reserve FEDI Federal Reserve Financial Services 1

Section 7 — Financial Services Sector

7-23

Most companies responded that they had only two employees
(full-time equivalents [FTEs]) involved in operating and supporting
FEDI transactions and eight FTEs supporting clearinghouse
transactions. However, one of the largest companies indicated
that they had five FEDI staff and 200 clearinghouse staff
supporting electronic transactions. Almost all of respondents said
that their information reflected FEDI and clearinghouse transaction
activity for the entire company.

Incidence and Costs of Software Errors and Bugs

Approximately two-thirds of the companies providing information
on software errors and bugs indicated that they had experienced
major software errors in the previous year. The remaining one-
third of the companies said they did not experience any major
software errors over the past year and that minor errors were
quickly corrected at little to no cost.

For the respondents that did have major errors, they reported an
average of 40 major and 49 minor software bugs per year in their
FEDI or clearinghouse software systems (see Table 7-13).
Approximately 16 percent of those bugs were attributed to router
and switch problems, and 48 percent were attributed to
transaction software problems. The source of the remaining 36
percent of errors was unknown. All members of the sample
reported that the software problems they experienced in 2000
were typical of other years.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-24

Table 7-13. Incidence and Costs of Software Errors

Firms Experiencing Errors

Impact Categories
Percent of Firms

Reporting
Average of Firms
Reporting Errors

Percentage of Firms
With No Errors

Number of major errors 61% 40 39%

Repair cost per error (labor
hrs)

18.4 hour

Lost data per error ($) $1,425

Delayed new service
introduction (months)

1.5 months

Number of minor errors 71% 49.4 29%

Costs per error $3,292.9

Typical problems encountered due to bugs were

Z increased person-hours used to correct posting errors,
Z temporary shut down leading to lost transactions, and
Z delay of transaction processing.

Most respondents reported that the software errors only
temporarily delayed transactions. One respondent reported
transactions being shut down for 30 to 60 minutes. Approximately
15 percent of respondent companies indicated that they had lost
reputation as a result of a software error, 5 percent reported lost
market share, and 10 percent said that they experienced delayed
product or service introduction. The other respondents said that
they had no market share or reputation loss.

For the respondents who did have major software errors, they
estimated that an average of 18.4 labor hours is spent to repair
each error or bug. In addition, several firms indicated that they
had lost information as a result of software errors and that the
average value of information loss was about $1,425 per software
error.

Eight-two percent of minor errors experienced by the companies
increased operating costs as a result of developing patches and
work-arounds for their software. On average, companies spend
approximately $3,293 per year on solutions for minor errors.

Section 7 — Financial Services Sector

7-25

However, responses varied greatly with one respondent saying
that minor errors cost his company over $12,000 per year.

Software Life-Cycle Costs

Respondents were asked about the life-cycle costs of FEDI and
clearinghouse software. Table 7-14 presents the total costs of
life-cycle activities, including software purchase decisions,
installation and acceptance testing, annual maintenance, and
redundant system costs. The last column in Table 7-14 indicates
the percentage of these expenditures that are due to software
errors and bugs. This percentage reflects the average cost
savings that a typical firm would receive if all software bugs were
found by the developer prior to release of the software product.
This percentage reduction represents an upper bound of the
benefits from an improved software testing infrastructure.

Table 7-14. Total Costs of Search, Installation, and Maintenance (Life-Cycle Costs)

Average Annual Cost of
Activities ($)

Average Cost Reduction Associated
with Software Errors (%)a

Purchase decision $481.6 20%

Installation and acceptance $393,500 16%

Maintenance $1,578.3 11%

Redundant system costs $3,466.7 46%

aReflects cost savings from eliminating all software bugs and errors.

Purchase Decision

On average, the companies indicated that they spend
approximately 4 months and one to two FTEs researching new
FEDI or clearinghouse software packages before they purchase a
package. For this sample, the average expenditure was $482,
which we calculated by multiplying the cost of each company’s
reported FTEs by the amount of time the company reported
expending for purchasing new FEDI or clearinghouse software
times an hourly rate of $75 per hour.

Sixty-seven percent of respondents said that they could reduce
their search costs if they had better information about the quality
of the software products. These respondents indicated they could

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-26

reduce search time by approximately 1 month, reflecting an
average savings of about 20 percent, or $12,000 per company for
this percentage of the population.

Installation and Acceptance Testing. Companies on average
spend about 65 hours per month for 2 months on installation and
acceptance testing, representing about $393,500 per installation.
The level of effort varied greatly, ranging from 1 to 480 hours of
staff time.

Respondents said that about 16 percent of installation costs were
associated with software errors and bugs. This reflects an
average savings of about $62,960 per firm. Two respondents said
that they used external consultants for installation and acceptance
testing.

Annual Maintenance Costs. Maintenance expenditures on FEDI
and clearinghouse software averaged $1,578 per year. Most
expenditures were for standard maintenance contracts with the
provider of the software.

Respondents said that maintenance expenditures could be
reduced by about 11 percent if software errors and bugs were
eliminated, reflecting an average cost savings of approximately
$174 per year.

Redundant System Costs. Approximately half of the companies
indicated that they maintain redundant backup systems after
installing new software. On average these systems were
maintained about 3 months at a cost of $400 per month. Thus,
the elimination of bugs would represent a savings of about $1,595
per new system installed for the 50 percent of the population
maintaining redundant systems.

7.3.4 Software User Costs Per Transaction

The total costs of software bugs and errors for a firm is the sum of
the mitigation costs associated with major and minor errors when
they occur (Table 7-13) and the avoidance costs incurred
throughout the life-cycle of the software product (Table 7-14). We
divided total firm cost by firm transactions to get a cost per
transaction metric that we later used to weight the impact
estimates.

Section 7 — Financial Services Sector

7-27

We developed separate impacts per deposit/loan transaction
estimates for banks and credit unions. Banks and savings
institutions are more likely to be diversified, engaging in many
different business activities and hence may have low cost-to-sales
and cost-to-employee ratios. In contrast, credit unions tend to be
smaller companies where software costs are likely to be a much
larger share of their deposit/loan transactions. Stratifying the
population and using separate company-type cost-to-transaction
ratios provide a more accurate estimate of national impacts

Table 7-15 presents costs-to-transactions ratios for
subcomponents for both banks and credit unions. Because not all
respondents were able to provide information for each
subcomponent (e.g., major errors, minor errors, purchase costs)
an average costs-to-transaction ratio was calculated individually
for each subcomponent. The average cost-to-transaction ratios
for all subcomponents were then summed to obtain the total
average cost-to-transaction ratio for each company type. In
addition to giving the dollar cost per impact subcategory, we also
present the percentage distribution of costs. It is of interest to
note that the costs of an inadequate infrastructure are distributed
across numerous types of bugs.

Table 7-15 shows that the major error subcategory represents the
largest share of total costs associated with software bugs and
errors. This subcategory includes labor expenditures to fix major
errors and the value of information lost as a result of major errors.
The average cost per million dollars in transactions is $55 for
major errors and $2 for minor errors. The second and third largest
impact subcategories are additional expenditures (due to bugs) for
software purchase decisions and installation costs associated with
bugs.

Separate impact estimates
per deposit/loan were
developed for banks and
credit unions.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-28

Table 7-15. Software Bug and Error Costs Per Million Dollars of Deposits and Loans

Major
Errors

Minor
Errors

Purchase
Decision

Costs Due
to Bugs

Installation
Costs Due

to Bugs

Maintenanc
e Costs Due

to Bugs

Redundant
Systems

Costs Due
to Bugs

Total
Cost Due
to Bugs

Banks and
savings
institutions

$54.66 $2.13 $12.14 $28.73 $0.43 $0.11 $98.20

Percentage of
costs

55.7% 2.2% 12.4% 29.3% 0.4% 0.1% 100.0%

Credit unions $282.93 $7.43 $16.51 $10.71 $0.43 $0.11 $318.11

Percentage of
costs

88.9% 2.3% 5.2% 3.4% 0.1% 0.0% 100.0%

Table 7-16 illustrates the costs associated with software bugs of
representative banks and credit unions of various sizes. The table
indicates that the costs are significant. For a bank that has $100
million in transactions, it experiences an economic cost of $10,000
per year due to software bugs and errors. It is interesting to note
that companies with less than $100 million dollars in depository
and loan transactions are affected proportionally much more than
companies with larger transaction amounts. For a bank with
transactions of $10 billion, its total cost attributable to software
bugs and errors is just under $1 million per year.

Table 7-16. Company Costs Associated with Bugs for Hypothetical Company Sizes

Hypothetical Firm Size
(millions of deposits and loans)

Total Company Costs Associated with Software Errors and
Bugs

Banks and Savings Institutions

$100 $9,820

$10,000 $982,003

Credit Unions

$100 $31,811

$10,000 $3,181,141

Section 7 — Financial Services Sector

7-29

Based on interviews with industry experts, we believe the
increasing proportional impact for smaller companies is due two
factors:

Z Smaller firms are less likely to have the in-house
capabilities to trouble shoot and correct errors as they
occur. As a result, the error typically affects business
operations for a longer period of time and may not be fully
corrected the first time.

Z Large companies get higher priority customer support from
software vendors. It is not unusual for a software vendor
to have two to three support staff permanently assigned to
their major clients. In contrast, smaller customers typically
receive support through call-in help lines where response
time may not be as fast.

7.3.5 Partial Reduction of Software Errors

The costs in the previous sections reflect the total cost associated
with software errors and reflects an infrastructure where all bugs
and errors are found and corrected prior to product release.
However, our discussions with industry indicated that it is not
feasible or economical for software developers to produce “bug-
free” software.

To estimate the impact of an improved testing infrastructure on
end users, as part of the end-user survey we also investigated
how the costs associated with bugs and errors in FEDI and
clearinghouse software would change if the number of bugs and
errors embedded in these software products were partially
reduced. To this end, respondents were asked what the cost
savings would be if their company encountered a 25, 50, or 75
percent reduction in software errors.

It was anticipated that the rate at which the cost of bugs
decreases as the number of bugs decreases will not be the same
for all of the cost categories. For example, some cost–bug
relationships may be linear (i.e., a 50 percent reduction in bugs
leads to a 50 percent reduction is costs), and some may be
nonlinear (i.e., a 50 percent reduction in bugs may lead to less
than a 50 percent reduction in costs because even a small
number of bugs requires testing, backup, systems, etc.).

Table 7-17 presents respondents’ estimates of the percentage
cost reduction associated with different percentage reductions in

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-30

bugs for each of the major cost categories discussed above.
Table 7-17 indicates that a 25 percent reduction in errors would
lead to a 17 percent reduction in major failure costs; 9 percent
reduction in minor failure costs; and corresponding reductions in
purchase, installation, maintenance, and redundant systems
costs.

Table 7-17. Cost Reductions as a Function of Error Reductions
This table shows the average percentage reduction in costs for a given percent reduction in software errors. The rate
at which costs decrease (as errors decrease) varies for different types of software costs.

Cost Categories 25% Reduction in Errors 50% 75%

Major failure costs 17 32 46

Minor failure costs 9 19 36

Purchase decision costs 26 28 32

Installation costs 29 31 35

Maintenance costs 30 32 32

Redundant system costs 19 19 25

For major and minor software bugs, respondents indicated that
the costs generally decline proportionally as the percentage of
bugs is reduced. This implies that the cost per bug is relatively
constant. These costs may be classified mostly as mitigation
costs and are activities in response to errors.

In comparison, the other categories—purchase decisions,
installation costs, maintenance costs, and redundant system
costs—are mostly avoidance costs. The benefits from reduced
bugs for these categories are relatively flat until a substantial
share (i.e., 75 percent) of the bugs are reduced. In these
instances, a small number of bugs (or threat of bugs leading to
failures) still lead to significant “avoidance” costs. This indicates
that companies would continue to experience these costs even
though the quality of the software product that they are producing
is improving. In other words, these fixed costs may continue to
exist until software quality nears the point of zero errors.

Based on the developer case study, we estimate an improved
infrastructure would lead to a 50 percent reduction in errors found
in the post-product release stage. The 50 percent reduction

A 50 percent reduction in
errors was used in the
improved scenario.

Section 7 — Financial Services Sector

7-31

estimate, along with the relationship between percentage error
reduction and cost reduction presented in Table 7-17, is used to
calculate cost saving for the users’ “feasible” infrastructure
scenario presented below.

7.3.6 Users’ Industry-Level Impact Estimates

We weighted cost per transaction impact estimates to obtain the
industry-level economic impact of an inadequate software testing
infrastructure for the financial services sector. We normalized and
weighted the economic impact estimates by company depository
and loan transaction data because the costs of errors and bugs
are a function of the volume of transactions; this method leads to
an estimate that reflects the total transactions within the industry.

Multiplying the weight by the cost per transaction generates the
total costs attributable to software bugs. As shown in Table 7-18,
the total cost attributable to software bugs using this approach is
$1 billion. The potential cost reduction from feasible infrastructure
improvements is $312 million. Banks account for over 80 percent
of the total impacts in both scenarios.

Table 7-18. Annual Impacts’ Weighted Cost Per Deposits and Loans

Company Size
in

Transactions

Bug and Error
Costs per
$Million of

Transactions
Weight

($Millions)a

The Cost of
Inadequate

Software Testing
Infrastructure

Potential Cost
Reduction from

Feasible
Infrastructure

Improvementsb

Banks $98.20 $8,038,0 $789,338,6 $244,027,852

Credit unions $318.11 $680,500 $216,476,6 $68,083,419

Total $8,718,5 $1,005,8 $312,111,271

aTotal deposits and loans in financial services sector.
bBased on a 50 percent reduction of errors.

The “feasible” infrastructure cost savings are less than 50 percent
of the total infrastructure cost because there is not a one-to-one
correlation between the share of bugs removed and the
percentage cost reduction. As discussed in the previous section,
a 50 percent reduction in bugs leads to less than a 50 percent
reduction in costs.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-32

The impact estimates presented in Table 7-18 are conservative
estimates because they only include the avoidance and mitigation
costs for financial service companies. These estimates do not
include the delay costs imposed on the consumers of financial
services due to system downtime or costs associated with errors
in financial transactions.

8-1

National Impact8 Estimates

The analysis presented in the previous sections generated
estimates of the costs of an inadequate software testing
infrastructure for software developers and users in two
representative sectors of the economy: transportation equipment
manufacturing and financial services. This section extrapolates
the per-employee costs for these two sectors to other
manufacturing and service sectors to develop an approximate
estimate of the economic impacts of an inadequate infrastructure
for software testing for the total U.S. economy.

Table 8-1 shows that the national cost estimate of an inadequate
infrastructure for software testing is $59.5 billion. The potential
cost reduction from feasible infrastructure improvements is
$22.2 billion. This represents about 0.6 to 0.2 percent of the
U.S.’s $10 trillion dollar gross domestic product (GDP). Software
developers accounted for about 40 percent of impacts, and
software users accounted for the remaining 60 percent.

The Economic Impacts of Inadequate Infrastructure for Software Testing

8-2

Table 8-1. National Economic Impact Estimates

The Cost of Inadequate
Software Testing Infrastructure

(billions)

Potential Cost Reduction from
Feasible Infrastructure

Improvements
(billions)

Software
developers

$21.2 $10.6

Software users $38.3 $11.7

Total $59.5 $22.2

This section begins with a review of the per-employee impact
estimates for the transportation equipment manufacturing and
financial service sectors.23 Section 8.1 and Section 8.2 present
the per employee cost metrics for software developers and
software users that were estimated through the industry surveys.
Section 8.3 uses these impact metrics to extrapolate the survey
findings to other industries to get an approximate measure of the
total economic costs of software bugs and errors. The limitations
of this approach are discussed in Section 8.4.

8.1 PER-EMPLOYEE TESTING COSTS: SOFTWARE
DEVELOPERS
To extrapolate cost impact estimates obtained from the developer
surveys to national estimates, a proper weighting mechanism is
needed. Typically weighting procedures are conducted using
either employment or sales. For software testing, RTI elected to
weight the results by an employee metric—specifically the number
of software testers.

Results are not weighted by sales because of the economics of
software production. Software is a high-fixed cost, low (near zero)
marginal cost industry. Software sales can often be large when
very little effort is involved in the testing process. Alternatively, for
some software products a significant amount of testing may have

23Note that in Section 6 impacts for the financial services sector were weighted

by transactions. However, transactions is not an appropriate weight for
leveraging the impact estimates from this sector to other service sectors in
the economy. For this reason, impacts per employee are calculated in this
section and used to develop national service-sector impacts.

Section 8 — National Impact Estimates

8-3

occurred, but sales could be limited because of the stage in the
product life-cycle.

The total number of computer programmers and computer
software engineers is published by the Bureau of Labor Statistics
(BLS) and is listed in Table 8-2. A portion of these programmers
and software engineers are engaged in testing activities. The BLS
categories listed in Table 8-2 are used to estimate the total
number of FTEs engaged in testing and debugging activities.
Based on interviews with industry, we estimate that approximately
10 percent of computer programmers’ and 35 percent of computer
software engineers’ time is spent debugging and correcting errors.
This yields a total of

Table 8-2. FTEs Engaged in Software Testing (2000)

BLS Categories
National

Employment

Percentage
Involved in

Testing
Number of

FTEs

Computer programmers 585,000 10% 58,500

Computer software engineers: applications 380,000 35% 133,000

Computer software engineers: systems
software

317,000 35% 110,950

National total 1,282,0 302,450

302,450 FTEs engaged in testing and debugging activities and
represents approximately one-fourth of all computer programmers
and software engineers.

Based on the findings from the software developers’ surveys
presented in Section 6 and Section 7, total testing costs per
software tester are about $138,000 for CAD/CAM/CAE/PDM
software developers and $161,000 for
FEDI/clearinghouse/router/switch developers.24 These costs
include testing labor, hardware, external testing services, and
related after-sales services. The labor costs are based on the

24The cost per employee estimates are based on the survey findings that are

presented in Section 6 and Section 7 and are calculated as total testing costs
(including labor, software, hardware, etc.) divided by the number of FTE
testers.

The Economic Impacts of Inadequate Infrastructure for Software Testing

8-4

average computer software engineers’ fully loaded annual wage
obtained from the BLS (2002). As shown in Table 8-3, the cost of
an inadequate infrastructure is $53,000 and $76,000 per tester for
the transportation and financial services sectors. This represents
the reduced level of testing resources if all errors were found in
the stage they were introduced. Similarly, the potential cost
reductions from feasible infrastructure improvements are $23,000
and $38,000 per tester for the transportation and financial services
sectors.

Because the BLS does not break out tester employment by
industry sector, we used a weighted average of the
automotive/aerospace and financial services cost savings in
conjunction with national tester employment to calculate cost
savings presented in Table 8-3. The weight is based on the total
employment of the manufacturing and service sectors. The
weighted average cost of an inadequate

Section 8 — National Impact Estimates

8-5

Table 8-3. Software Developer Costs Per Tester

Sector/Cost Category Cost Per Tester

The Cost of
Inadequate Software
Testing Infrastructure

Potential Cost Reduction
from Feasible
Infrastructure
Improvements

Transportation

Labor expenditures $136,28 $52,212 $22,975

External testing services $100 $38 $17

Hardware $250 $96 $42

After-sales services $1,36 $522 $230

Total $137,99 $52,869 $23,264

Financial Services

Labor expenditures $136,28 $64,014 $32,793

External testing services $17,27 $7,513 $4,271

Hardware $4,60 $2,426 $1,057

After-sales services $3,13 $1,653 $720

Total $161,29 $75,607 $38,843

Weighted Average Cost per
Tester $155,49 $69,945 $34,964

infrastructure is $70,000 per tester and the weighted average cost
reduction from feasible improvements is $35,000 per tester.

8.2 PER-EMPLOYEE COSTS: SOFTWARE USERS
As with the software developers, a proper weighting method is
needed to extrapolate the impacts generated in Section 6 and
Section 7 to national-level user cost impacts. Similar to above, we
used employment as the weight to estimates national costs
attributable to an inadequate infrastructure for software testing.

Ideally the number of employees involved with operating and
maintaining software products would be used as the weighting
metric. However, because computer use increasingly cuts across
all aspects of business operations, estimating a total FTE for
computer user and support is difficult. For this reason total
employment in the service and manufacturing sectors was used

http://www.salon.com/tech/feature/2000/12/06/bad_companies/print.html
http://www.salon.com/tech/feature/2000/12/06/bad_companies/print.html

The Economic Impacts of Inadequate Infrastructure for Software Testing

8-6

as the weighting metrics. This information is readily available from
BLS and is presented in Table 8-4 (BLS, 2002). Software
companies have been

Table 8-4. National Employment in the Service and Manufacturing Sectors

Employment
(millions)

Service sectors: include services; retail trade; finance, insurance, and real estate;
and wholesale trade

74.1

Manufacturing: includes manufacturing and construction 25.0

Note: Excluded are the government, transportation and utilities, and mining sectors (27.2 million) because their
computer use (intensity of use) was deemed significantly different from either the manufacturing or service sectors’
use. Also, excluded are computer programmers and software engineers (1.3 million) because their impacts are
captured under developer costs.

Source: U.S. Department of Labor, Bureau of Labor Statistics (BLS). 2002. Occupational Outlook Handbook,
2002-03 Edition. Available at <http://www.bls.gov/oco/home.htm>.

excluded from the service sector employment because they are
weighted separately.

Table 8-5 provides the per-employee cost metrics derived from the
survey findings presented in Section 6 and Section 7. The third
and fifth columns of Table 8-5 replicate the total user cost impacts
for the automotive/aerospace sectors and the financial services
sector. The sector-level impacts are then divided by their
associated sector employment to develop cost impacts per
employee.

Table 8-5. Per-Employee Cost Metrics

The Cost of Inadequate
Software Testing

Infrastructure

Potential Cost Reduction
from Feasible
Infrastructure
Improvements

Number of
Employees
(thousands)

Sector
Costs

(millions)
Cost per

Employee

Sector
Costs

(millions)
Cost per

Employee

Automotive and aerospace 3,199.6 $1,467.1 $459 $431.5 $135

Financial services 2,774.9 $1,005.8 $362 $312.1 $112

Section 8 — National Impact Estimates

8-7

8.4 NATIONAL IMPACT ESTIMATES
To estimate the national cost of an inadequate infrastructure for
software testing, the per-employee cost metrics for the financial
services and transportation sectors are weighted to calculate the
total costs for the U.S. manufacturing and service sectors.

Table 8-6. National Impact Estimates

The Cost of Inadequate
Software Testing

Infrastructure

Potential Cost Reduction
from Feasible Infrastructure

Improvementsa
Number of

Testers/Employee
s (millions) Cost per

Total Cost
(millions) Cost per

Total Cost
(millions)

Software developers 0.302 $69,945 $21,155 $34,964 $10,575

Software users

Manufacturing 25.0 $459 $11,463 $135 $3,375

Service sector 74.1 $362 $26,858 $112 $8,299

Total $59,477 $22,249

aBased on a 50 percent reduction of errors.

As shown in Table 8-6, the national impact estimate from an
inadequate infrastructure for software testing is $59 billion and the
potential cost reduction from feasible improvements is $22 billion.
Software users account for a larger share of total inadequate
infrastructure costs (64 percent) compared to “feasible” cost
reductions (52 percent) because a large portion of users’ costs are
due to avoidance activities. Whereas mitigation activities
decrease proportionally to the decrease in the number of bugs
and errors, avoidance costs (such as redundant systems and
investigation of purchase decisions) are likely to persist even if
only a few errors are expected.

For software developers, the feasible cost savings are
approximately 50 percent of the total inadequate infrastructure
costs. This reflects a more proportional decrease in testing effort
as testing resources and tools improve.

http://www.ibm.com/annualreport/1998/discussion/ibm98armd04.html
http://www.ibm.com/annualreport/1998/discussion/ibm98armd04.html

The Economic Impacts of Inadequate Infrastructure for Software Testing

8-8

8.5 LIMITATIONS AND CAVEATS
We want to emphasis that because the national impact estimates
presented in this section were developed from interviews with two
sectors (transportation equipment manufacturers and financial
service providers) representing 5 percent of the U.S. economy,
these estimates should be considered approximations only. They
are presented primarily to illustrate the magnitude of potential
national impacts.

The following factors should be considered when interpreting the
national estimates:

Z The two industry sectors selected may not be
representative of all the industries included in the
manufacturing and service sectors. User costs per
employee are likely to vary by industry. Thus, the user
cost estimates should be considered to have a relatively
high degree of uncertainty. For example, if costs per
employee are greater in the automotive/aerospace and
financial services sectors than the national averages, this
would lead to an overestimate of the user impacts.

Z Cost per software tester are more likely to be relatively
constant across software companies serving different
industries. Thus, we are more confident in the national
impact estimates for software developers. And because
tester costs represent between one-third to one-half the
total national costs, this supports the robustness of our
results.

Z Several user sectors of the economy were excluded from
the national employment figures used to weight impact
estimates. In particular, we excluded the government
sector with 19.9 million employees, which would lead to an
underestimate of national costs.

Z Quantifying the impact of inadequate testing on mission
critical software was beyond the scope of this report.
Mission critical software refers to software where there is
extremely high cost to failure, such as loss of life.
Including software failures associated with airbags or
antilock brakes would increase the national impact
estimates.

Z Finally, the costs of software errors and bugs to residential
households is not included in the national cost estimates.
As the use of computers in residential households to
facilitate transactions and provide services and
entertainment increases, software bugs and errors will
increasingly affect household production and leisure.
Whereas these software problems do not directly affect
economic metrics such as GDP, they do affect social

http://www.mentorg.com/investor_relations/MentorAnnual.pdf
http://www.mentorg.com/investor_relations/MentorAnnual.pdf
http://www.nacha.org/
http://www.nist.gov/itl/lab/nistirs/ir6025.htm
http://webopedia.internet.com/

Section 8 — National Impact Estimates

8-9

welfare and continue to limit the adoption of new computer
applications.

http://www.ptc.com/company/pmtc/1998/index.htm
http://www.ptc.com/proe/overview/index.html
http://www.ptc.com/proe/overview/index.html
http://www.systemtransformation.com/cpgappdxd.htm
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf

http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf

R-1

References

AmericanBanker.com. 1999. <http://www.americanbanker.com/
PSUser/ABO_Display.htm?type=RankingBanks&
master=1999/Holding/ACHYE1999.html>.

Andersson, M., and J. Bergstrand. 1995. “Formalizing Use
Cases with Message Sequence Charts.” Unpublished
Master’s thesis. Lund Institute of Technology, Lund,
Sweden.

Apfelbaum, L., and J. Doyle. 1997. “Model Based Testing.”
Presented at the Software Quality Week Conference, May.

Bank for International Settlements (BIS). 2000. Statistics on
Payment Systems in the Group of Ten Countries.
February.

Barron, Cheryll Aimee. December 6, 2000. “High Tech’s
Missionaries of Sloppiness.” <http://www.salon.com/tech/
feature/2000/12/06/bad_companies/print.html>.

Baziuk, W. 1995. “BNR/NORTEL Path to Improve Product
Quality, Reliability, and Customer Satisfaction.” Presented
at the Sixth International Symposium on Software
Reliability Engineering, Toulouse, France, October.

Beizer, B. 1984. Software System Testing and Quality
Assurance. New York: Van Nostrand Reinhold Company,
Inc.

Beizer, B. 1990. Software Testing Techniques. Boston:
International Thomson Computer Press.

Bentley Systems Incorporated. Corporate Backgrounder obtained
November 1999. <http://www.bentley.com/bentley/
backgrnd.htm>.

Besanko, David, David Dranove, and Mark Shanley. 1996. The
Economics of Strategy. New York: John Wiley & Sons.

http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf

The Economic Impacts of Inadequate Infrastructure for Software Testing

R-2

Black, B.E. 2002. “Automatic Test Generation from Formal
Specifications.” <http://hissa.nist.gov/~Black/
FTG/autotest.html>.

Boehm, B.W. 1976. “Software Engineering.” IEEE Transactions
on Computer SE-1(4):1226-1241.

Boehm, B.W. 1978. Characteristics of Software Quality. New
York: American Elsevier.

Booker, E. 1999. “In Focus: Enterprise Application
IntegrationMiddleware Apps Scale Firewalls.”
Internetweek 765.

Carnegie Mellon Software Engineering Institute. Capability
Maturity Model for Software (SW-CMM).
<http://www.sei.cmu.edu/cmm/>. Last modified April 24,
2002.

Census. 2000. 1997 Finance and Insurance Economic Census.

CIMdata. 2000. <http://www.cimdata.com/PR000307B.htm>.

Cisco Systems. Cisco 2001 Annual Report. 2001.
<www.cisco.com/warp/public/749/ar2001/online/financial_r
eview/mda.html>.

Clarke, R. 1998. Electronic Data Interchange (EDI): An
Introduction. <http://www.anu.edu.au/pepple/
Roger.Clarke/EC/EDIIntro.html>.

Cohen, D.M., S.R. Dalal, J. Parelius, and G.C. Patton. 1996.
“The Combinatorial Design Approach to Automatic Test
Generation.” IEEE Software 13(5).

Daratech, Inc. 1999. CAD/CAM/CAE Market Trends and
Statistics, Vol. 1. Cambridge, MA.

The Dell’Oro Group. 2001. <www.delloro.com>.

Dixit, Avinash K., and Robert S. Pindyck. 1994. Investment under
Uncertainty. Princeton, New Jersey: Princeton University
Press.

Economist. May 20, 2000. Survey: Online Finance, Paying
Respects. <http://www.economist.com/
displayStory.cfm?Story_ID=3009189>.

EDI Aware. 1994. The ABC of EDI.
<http://www.edi.wales.org/feature4.htm>.

Executive Office of the President, OMB, 1998. North American
Industry Classification System, United States, 1997.
Lanham, MD: Bernan Press.

Freeman, Chris, and Luc Soete. 1999. The Economics of
Industrial Innovation, 3rd edition. London: Cassell.

http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.census.gov/prod/ec97/97m3341d.pdf
http://www.ug.eds.com/
http://www.visio.com/files/ar98/Visar98.pdf

References

R-3

Gallagher, L. 1999. Conformance Testing of Object-Oriented
Components Specified by State/Transition Classes.
<ftp://xsum/sdct.itl.nist.gov/sysm/NISTIR6592.pdf>.

Gascoigne, Bill. 1995. ”PDM: The Essential Technology for
Concurrent Engineering.” <http://www.PDMIC.com/
articles/index.html>.

Hailpern, B., and P. Santhanam. 2002. “Software Debugging,
Testing, and Verification.” IBM Systems Journal 41(1).

International Business Machines (IBM). 1998. Annual Report:
Management Discussion. <<http://www.ibm.com/
annualreport/1998/discussion/ibm98armd04.html>.

IDC. 2000. Gigabit Router, Switch Purchases Soar During 1Q00.
<http://www.idc.com/communications/press/pr/
CM061200PR.stm>.

InformationWeek.com. 2002. “New Consortium to Target
Software Quality.” May 16, 2002.

Institute of Electrical and Electronics Engineers (IEEE). 1988.
“IEEE Guide for the Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software.” New York:
Institute of Electrical and Electronics Engineers.

Institute of Electrical and Electronics Engineers (IEEE). 1996.
“IEEE Software Engineering Collection: Standard
Dictionary of Measures to Produce Reliable Software
(IEEE Computer Society Document).” New York: Institute
of Electrical and Electronics Engineers, Inc.

Institute of Electrical and Electronics Engineers (IEEE). 1998.
“IEEE Standard for Software Quality Metrics Methodology.”
New York: Institute of Electrical and Electronics
Engineers, Inc.

Institute of Electrical and Electronics Engineers/American National
Standards Institute (IEEE/ANSI). 1993. “Software
Reliability.” Washington, DC: American Institute of
Aeronautics and Astronautics.

ISO-9126 International Organization for Standardization. 1991.
Information Technology Software Product
EvaluationQuality Characteristics and Guidelines for
their Use. Geneva, Switzerland: International
Organization for Standardization.

ITToolbox. 1999. “ITToolbox Knowledge Bank Forums. RE:
SAP 4.5B Test Scripts.” <http://www.sapassist.com/forum/
message.asp?i=3346&mo=&yr=&h1=306&h2=355>.

The Economic Impacts of Inadequate Infrastructure for Software Testing

R-4

Jones, C. 1997. Software Quality-Analysis and Guidelines for
Success. Boston: International Thompson Computer
Press.

Just, Richard E., Darrell L. Hueth, and Andrew Schmitz. 1982.
Applied Welfare Economics and Public Policy. Englewood
Cliffs, NJ: Prentice-Hall, Inc.

Kit, E. 1995. Software Testing in the Real World: Improving the
Process. Reading, MA: ACM Press Addison Wesley
Longman, Inc.

Liebowitz, Stan J., and Stephen E. Margolis. 1999. “Causes and
Consequences of Market Leadership in Application
Software.” Paper presented at the conference Competition
and Innovation in the Personal Computer Industry. April
24, 1999.

The MacNeal-Schwendler Corporation. 1998. Annual Report.
<http://www.mscsoftware.com/ir/annual.html>.

McCabe, T., and A. Watson. December 1994. “Software
Complexity.” Cross talk, Journal of Defense Software
Engineering 7(12):5-9.

McCall, J., P. Richards, and G. Walters. 1977. Factors in
Software Quality, NTIS AD-A049-014, 015, 055.
November.

Mentor Graphics Corporation. 1998. Annual Report.
<http://www.mentorg.com/investor_relations/
MentorAnnual.pdf>.

Michel, R. 1998. “Putting NT to the Test.” Manufacturing
Systems 16(3):A18-A20.

Myers, G.J. 1979. The Art of Software Testing. London: John
Wiley & Sons.

NACHA: The Electronic Payment Association. 2000.
<www.nacha.org>.

NASA IV&V Center, Fairmount, West Virginia. 2000.

National Institute of Standards and Technology (NIST). 1997.
Metrology for Information Technology (IT).
<http://www.nist.gov/itl/lab/nistirs/ir6025.htm>.

National Science Foundation (NSF). 1999. Research and
Development in Industry: 1997.

Offlutt, R.J., and R. Jeffery. 1997. “Establishing Software
Measurement Programs.” IEEE Software 14(2):45-53.

P.C. Webopaedia. 1996. <http://webopedia.internet.com>.

References

R-5

Parametric Technology Corporation. 1998. Annual Report.
<http://www.ptc.com/company/pmtc/1998/index.htm> As
obtained October 1999.

Perry, W.E. 1995. Effective Methods for Software Testing. New
York: John Wiley & Sons, Inc.

Pressman, R.S. 1992. Software Engineering: A Practitioner’s
Approach, Third Edition. New York: McGraw-Hill.

Pro/ENGINEER. 1999. <http://www.ptc.com/proe/
overview/index.html>.

Product Data Management Information Center (PDMIC).
<http://www.pdmic.com>. As obtained on March 13, 2000.

Rivers, A.T., and M.A. Vouk. 1998. “Resource, Constrained Non-
operational Testing of Software.” Presented at the Ninth
International Symposium on Software Reliability
Engineering, Paderborn, Germany, November 4-7.

Robinson, William, Gurumurthy Kalyanaram, and Glen L. Urban.
1994. “First-Mover Advantages from Pioneering New
Markets: A Survey of Empirical Evidence.” Review of
Industrial Organization 9(1):1-23.

Shea, Billie. July 3, 2000. “Software Testing Gets New Respect.”
InformationWeek.

Sullivan, Bob. 1999. “Online Banking Systems Crash.”
MSNBC.com. <http://www.zdnet.com/zdnn/stories/news/
0%2C4586%2C2249362%2 C00.html?chkpt=zdnnsmsa>.

System Transformation. 2000. Contingency Planning
Methodology. Appendix D: Contingency Planning Option.
<http://www.systemtransformation.com/cpgappdxd.htm>.

Tai, K.C., and R.H. Carver. 1995. “A Specification-Based
Methodology for Testing Concurrent Programs.” In 1995
Europe Software Engineering Conference, Lecture Notes
in Computer Science, W. Schafer and P. Botella, eds., pp.
154-172.

Tassey, G. 1997. The Economics of R&D Policy. Westport, CT:
Quorum Books.

U.S. Census Bureau. 1999av. “Automobile Manufacturing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3361a.pdf>.

U.S. Census Bureau. 1999aw. “Light Truck and Utility Vehicle
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3361b.pdf>.

The Economic Impacts of Inadequate Infrastructure for Software Testing

R-6

U.S. Census Bureau. 1999ax. “Heavy Duty Truck Manufacturing”
from Manufacturing—Industry Series, 1997 Economic
Census.
<http://www.census.gov/prod/ec97/97m3361c.pdf>.

U.S. Census Bureau. 1999ay. “Motor Vehicle Body
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3362a.pdf>.

U.S. Census Bureau. 1999az. “Truck Trailer Manufacturing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3362b.pdf>.

U.S. Census Bureau. 1999ba. “Motor Home Manufacturing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3362c.pdf>.

U.S. Census Bureau. 1999bc. “Travel Trailer & Camper
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3362d.pdf>.

U.S. Census Bureau. 1999bd. “Carburetor, Piston, Piston Ring &
Valve Manufacturing” from Manufacturing—Industry
Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3363a.pdf>.

U.S. Census Bureau. 1999be. “Gasoline Engine & Engine Parts
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3363b.pdf>.

U.S. Census Bureau. 1999bf. “Vehicular Lighting Equipment
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3363c.pdf>.

U.S. Census Bureau. 1999bg. “Other Motor Vehicle Electrical &
Electronic Equipment Manufacturing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3363d.pdf>.

U.S. Census Bureau. 1999bh. “Motor Vehicle Steering &
Suspension Component Manufacturing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3363e.pdf>.

References

R-7

U.S. Census Bureau. 1999bi. “Motor Vehicle Brake System
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3363f.pdf>.

U.S. Census Bureau. 1999bj. “Motor Vehicle Transmission &
Power Train Parts Manufacturing” from Manufacturing—
Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3363g.pdf>.

U.S. Census Bureau. 1999bk. “Motor Vehicle Seating and
Interior Trim Manufacturing ” from Manufacturing—Industry
Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3363h.pdf>.

U.S. Census Bureau. 1999bl. “Motor Vehicle Metal Stamping”
from Manufacturing—Industry Series, 1997 Economic
Census.
<http://www.census.gov/prod/ec97/97m3363i.pdf>.

U.S. Census Bureau. 1999bm. “Motor Vehicle Air-Conditioning
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3363j.pdf>.

U.S. Census Bureau. 1999bn. “All Other Motor Vehicle Parts
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3363k.pdf>.

U.S. Census Bureau. 1999bo. “Aircraft Manufacturing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3364a.pdf>.

U.S. Census Bureau. 1999bp. “Aircraft Engine & Engine Parts
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3364b.pdf>.

U.S. Census Bureau. 1999bq. “Railroad Rolling Stock
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3365a.pdf>.

U.S. Census Bureau. 1999br. “Ship Building and Repairing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3366a.pdf>.

U.S. Census Bureau. 1999bs. “Boat Building” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3366b.pdf>.

The Economic Impacts of Inadequate Infrastructure for Software Testing

R-8

U.S. Census Bureau. 1999bt. “Motorcycle, Bicycle & Parts
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3369a.pdf>.

U.S. Census Bureau. 1999bu. “Military Armored Vehicle, Tank &
Tank Component Manufacturing” from Manufacturing—
Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3369b.pdf>.

U.S. Census Bureau. 1999bv. “All Other Transportation
Equipment Manufacturing” from Manufacturing—Industry
Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3369c.pdf>.

U.S. Census Bureau. December 1999bx. “1997 Economic
Census, Professional, Scientific, and Technical Services.”
Geographic Area Series.

U.S. Department of Commerce, International Trade
Administration. 1998. U.S. Industry & Trade Outlook ’98.
New York: McGraw-Hill Companies.

U.S. Department of Commerce, Economics and Statistics
Administration, U.S. Census Bureau. February 2002.
Annual Survey of Manufacturers: Statistics for Industry
Groups and Industries: 2000. MOO(AS)-1.

U.S. Department of Labor, Bureau of Labor Statistics (BLS).
2002. Occupational Outlook Handbook, 2002-03 Edition.
Available at <http://www.bls.gov/oco/home.htm>.

Unigraphics Solutions Incorporated website.
<http://www.ug.eds.com>.

Visio Corporation. 1998. Annual Report.
<http://www.visio.com/files/ar98/Visar98.pdf>.

Voas, J.M., and M. Friedman. 1995. Software Assessment:
Reliability, Safety, and Testability. New York: Wiley &
Sons, Inc.

Voas, J.M. 1998. Software Fault Injection Inoculating Programs
Against Errors. New York: John Wiley & Sons, Inc.

Vouk, M.A. 1992. “Using Reliability Models During Testing with
Non-Operational Profiles.” Presented at the Second
Workshop on Issues in Software Reliability Estimation,
Livingston, NJ, October 12-13.

Washington Technology. 1998. Selected Security Events in the
1990s. <http://wtonline.com/vol13_no18/
special_report/277-1.html>.

Wilson, R.C. 1995. UNIX Test Tools and Benchmarks. New
Jersey: Prentice Hall, Inc.

A-1

Appendix A:
Glossary of Testing
Stages and Tools

A.1 GENERAL TESTING STAGES
Subroutine/Unit Testing. This stage includes subroutine and
unit testing. Software developers perform subroutine testing, the
lowest form of testing, as they write the program. Programmers
test a completed subroutine to see if it performs as expected. Unit
testing is the testing of a complete module or small program that
will normally range from perhaps 100 to 1,000 source lines of
code. Although unit testing may often be performed informally, it
is the stage where test planning and test case construction
begins.

New Function Testing. Developers use this stage to validate
new features that are being added to a software package. Often
used in conjunction with regression testing, new function testing is
commonly used when existing applications are being updated or
modified.

Regression Testing. Regression testing is used to ensure that
existing software functions of the product have not been
accidentally damaged as an unintended by-product of adding new
software features. As software evolves, regression testing
becomes one of the most important and extensive forms of testing
because the library of available test cases from prior releases
continues to grow.

The Economic Impacts of Inadequate Infrastructure for Software Testing

A-2

Integration Testing. This stage focuses on testing groups of
modules, programs, applications, or systems that developers
combine to form a larger system. Integration testing focuses on
testing for interoperability among the integrated elements of the
software product.

System Testing. This stage involves testing the system as a
whole. System testing is typically performed by the software
developer’s test personnel and is usually the last form of internal
testing performed by the software developer before customers get
involved with field testing (beta testing).

A.2 SPECIALIZED TESTING STAGES
Stress, Capacity, or Load Testing. These stages judge the
ability of an application or system to function when near or beyond
the boundaries of its specified capabilities or requirements in
terms of the volume of information used. The stress, load, or
capacity testing stage is often considered synonymous with the
performance testing stage. Stress testing attempts to break the
system by overloading it with large volumes. It is usually
performed by the software developer after, or in conjunction with,
integration or system testing. Typically stress testing cannot be
performed earlier because the full application is usually
necessary. Although the following specialized testing stages are
not considered stress testing, they also test how the system will
perform under adverse conditions.

Error-Handling/Survivability Testing. This stage assesses the
software product’s ability to properly process incorrect
transactions and survive from reasonably expected (or
unexpected) error conditions.

Recovery Testing. This stage assesses the software product’s
ability to restart operations after integrity of the application has
been lost.

Security Testing. Security testing is used to evaluate whether a
software product can adequately prevent improper access to
information. Security testing is usually performed before and after
the product has been released by testing personnel or by highly
specialized consultants employed by the user (Perry, 1995).

Appendix A — Glossary of Testing Stages and Tools

A-3

Performance Testing. This stage is used to determine whether
an application can meet its performance goals (Jones, 1997).
Typically the performance testing stage is executed by the
software developer during, or in conjunction with, system testing.
Benchmarks are standards against which other measurements
may be referred and are used to provide competitive analysis
information that marketing and sales personnel can use to give
consumers measures of the software’s quality relative to other
products (Wilson, 1995). Customers use marketing benchmarks
to compare performance prior to purchase, whereas system
architects and designers use technical benchmarks to
characterize performance prior to manufacturing (Wilson, 1995).

Platform Testing Stage. Sometimes known as the compatibility
testing stage, platform testing evaluates the software’s ability to
operate on multiple hardware platforms or multiple operating
systems or to interface with multiple software products (Jones,
1997).

Viral Protection Testing Stage. Major commercial software
developers typically conduct viral protection testing to ensure that
master copies of software packages do not contain viruses
(Jones, 1997).

A.3 USER-INVOLVED TESTING STAGES
Usability Testing. Also known as the human factors testing, this
stage is conducted to identify operations that will be difficult or
inconvenient for users. Usability testing is generally performed
before beta testing. It involves observing actual clients who use
the software product under controlled or instrumented conditions.
Usability testing is common for large commercial software
developers (Jones, 1997).

Field or Beta Testing. This stage is an external test involving
customers. Beta testing usually occurs after system testing.
External beta testing and internal usability testing may occur
concurrently. Beta testing may involve special agreements with
clients to avoid the risk of lawsuits if the software product has
serious problems (Jones, 1997). The next two testing activities
are associated with, or have similar goals as, field testing.

The Economic Impacts of Inadequate Infrastructure for Software Testing

A-4

Lab or Alpha Testing. These activities are typically used when
special laboratories are involved to house complex new
hardware/software products that prospective customers will test.
Customers test these products under controlled conditions prior to
having the software system installed at their own premises.
Software developers who build complex software systems
primarily use lab testing. In these cases typical beta testing is
infeasible because of hardware or software constraints.

Acceptance Testing. This process is used to determine whether
a product satisfies predefined acceptance criteria. It is a
combination of other types of tests to demonstrate that the product
meets user requirements. Customer acceptance testing is
commonly performed for contract software and for large systems
such as PDM software systems, but it is rarely used in high-
volume commercial “shrink wrapped” software products.
Sometimes, alpha and beta testing are considered a part of
acceptance testing (Jones, 1997; Kit, 1995).

A.4 TEST DESIGN AND DEVELOPMENT TOOLS
Data Dictionary Tools. These tools are documentation tools for
recording data elements and the attributes of the data elements.
Under some implementations, they can produce test data to
validate the system’s data edits.

Executable Specification Tools. These tools provide a high-
level interpretation of the system specifications to create response
test data. Interpretation of expected software products requires
system specifications to be written in a special high-level language
so that those specifications can be compiled into a testable
program.

Exhaustive Path-Based Tools. The purpose of these tools is to
attempt to create a test transaction for every possible condition
and every path in the program.

Volume Testing Tools. Volume testing tools identify system
restrictions (e.g., internal table size) and then create a large
volume of transactions designed to exceed those limits. Thus,
volume generators facilitate the creation of specific types of test
data to test predetermined system limits to verify how the system

Appendix A — Glossary of Testing Stages and Tools

A-5

functions when those limits are reached or exceeded (Perry,
1995).

Requirements-Based Test Design. These tools facilitate a
highly disciplined approach based on cause–effect graph theory to
design test cases that will help ensure that the implemented
system meets the formally specified requirements.

A.5 TEST EXECUTION AND EVALUATION TOOLS
Capture/Playback Tools. These tools capture user operations
including keystrokes, mouse activity, and display output. These
captured tests, including the output that has been validated by the
tester, form a baseline for future testing of product changes. The
tool can then automatically play back the previously captured tests
whenever needed and validate the results by comparing them to
the previously saved baseline. This frees the tester from having to
manually re-run tests over and over again when fixes,
enhancements, or other changes are made to the product (Kit,
1995).

Test Harnesses and Drivers Tools. Used for performance
testing, these tools invoke a program under test, provide test
inputs, control and monitor execution, and report test results.

Evaluation tools, also referred to as analysis tools, focus on
confirming, examining, and checking results to verify whether a
condition has or has not occurred. These include the following
tools.

Memory Testing Tools. These provide the ability to check for
memory problems, such as overwriting and/or overreading array
bounds, memory allocated but not freed, and reading and using
uninitialized memory. Errors can be identified before they become
evident in production and can cause serious problems. Detailed
diagnostic messages are provided to allow errors to be tracked
and eliminated. Memory testing tools are also known as bounds-
checkers, memory testers, run-time error detectors, or leak
detectors.

Instrumentation Tools. These measure the functioning of a
system structure by using counters and other monitoring
instruments.

The Economic Impacts of Inadequate Infrastructure for Software Testing

A-6

Snapshot Monitoring Tools. These show the content of
computer storage at predetermined points during processing.
These tools print the status of computer memory at predetermined
points during processing when specific instructions are executed,
or when data with specific attributes are processed.

System Log Reporting Tools. These tools provide an audit trail
of monitored events occurring in the environmental area controlled
by system software. The information can be used for analysis
purposes to determine how well the system performed.

Coverage Analysis Tools. These tools use mathematical
relationships to demonstrate what percentage of the software
product the testing process has covered. The resulting qualitative
metric is used for predicting the effectiveness of the test process.
This tool informs testers about which parts of the product have
been tested and which parts have not.

Mapping Tools. They analyze which parts of a computer
program are exercised during the test and the frequency of
execution of each statement or routine in a program. Mapping
tools can be used to detect system flaws, determine how much of
a program is executed during testing, and identify areas where
more efficient code may reduce execution time.

Simulation tools are also used to test execution. Simulation tools
take the place of software or hardware that interacts with the
software to be tested. Sometimes they are the only practical
method available for certain tests, like when software interfaces
with uncontrollable or unavailable hardware devices. These
include the following tools.

Disaster Testing Tools. These tools emulate operational
and/or system failures to determine if the software product can
survive or be correctly recovered after the failure.

Modeling Tools. Modeling tools simulate the functioning of
the software system and/or its environment to determine how
efficiently the proposed system solution will achieve the
system objectives.

Symbolic Execution Tools. These tools are used to identify
processing paths by testing the programs with symbolic rather
than actual test data. The symbolic execution results in an

Appendix A — Glossary of Testing Stages and Tools

A-7

expression that can be used to evaluate the completeness of
the programming logic. It is a technique that does not require
test data.

System Exercisers. These tools stress or load subsystem
components or physical devices by focusing on consuming
critical system resources such as peripherals, memory, and
CPU. For example, multiuser resource exercisers simulate full
or maximum workload for several users (Wilson, 1995).

A.6 ACCOMPANYING AND SUPPORT TOOLS
Code Comprehension Tools. These tools help us understand
unfamiliar code. They improve understanding of dependencies,
trace program logic, view graphical representations of the
program, and identify areas that should receive special attention,
such as areas to inspect.

Flowchart Tools. Flowchart tools are used to graphically
represent the system and/or program flow to evaluate the
completeness of the requirements, design, or program
specifications.

Syntax and Semantic Analysis Tools. These tools perform
extensive error checking to find errors that a compiler would miss,
and they are sometimes used to flag potential defects before or
during formal testing.

Problem Management Tools. Problem management tools are
sometimes called defect tracking tools, bug management tools,
and incident control systems and are used to record, track, and
generally assist with the management of defects and
enhancements throughout the life cycle of software products.
These include system control audit databases, scoring databases,
and configuration management tools.

B-1

Appendix B:
CAD/CAM/CAE/PDM
Use and
Development in the
Transportation
Sector

The appendix provides background on the users of
CAD/CAM/CAE/PDM software in the transportation sector and the
vendors that supply the software systems.

B.1 TRANSPORTATION EQUIPMENT MANUFACTURERS
(SECTOR 336)
Establishments in this sector of the economy manufacture motor
vehicles, ships, aircraft, railroad cars and locomotives, and other
transportation equipment. An estimated 13,206 establishments in
the U.S. produce transportation equipment. Their products
include the following:

Z motor vehicles (sector 3361) (e.g., complete automobiles
and light duty motor vehicles [i.e., body and chassis or
unibody], chassis);

Z motor vehicle body and trailer manufacturing (sector 3362)
(e.g., motor vehicle bodies and cabs; truck, automobile,
and utility trailers, truck trailer chassis, detachable trailer
bodies and chassis);

Z motor vehicle parts (sector 3363) (e.g., new and rebuilt
motor vehicle gasoline engines, engine parts; vehicular

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-2

lighting equipment; motor vehicle electrical and electronic
equipment; motor vehicle steering mechanisms and
suspension components; motor vehicle brake systems and
related components; motor vehicle transmission and power
train parts; motor vehicle seating, seats, seat frames, seat
belts, and interior trimmings; motor vehicle fenders, tops,
body parts, exterior trim and molding; other motor vehicle
parts and accessories);

Z aerospace products and parts (sector 3364) (e.g.,
aerospace engines, propulsion units, auxiliary equipment
and parts, prototypes of aerospace parts, converted
aircraft, restored aircraft or propulsion systems);

Z railroad rolling stock (sector 3365) (e.g., new and rebuilt
locomotives, locomotive frames and parts; railroad, street
and rapid transit cars and car equipment; rail layers, ballast
distributors, rail tamping equipment, and other railway track
maintenance equipment);

Z ship and boat building (sector 3366) (e.g., new and rebuilt
barges, cargo ships, drilling and production platforms,
passenger ships, submarines, dinghies [except inflatable
rubber], motorboats, rowboats, sailboats, yachts); and

Z other transportation equipment (sector 3369) (e.g.,
motorcycles, bicycles, metal tricycles, complete military
armored vehicles, tanks, self-propelled weapons, vehicles
pulled by draft animals, and other transportation equipment
not classified in sectors 3361-3366).

In such a broad sector, many factors affect industry trends and the
need for product innovation. This section highlights trends in two
sectors of the transportation equipment industry: motor vehicles
and aerospace.

In the motor vehicle industry, more open trading policies and
economies of scale make it efficient to use the same
underpinnings, engines, and transmissions on different vehicle
models produced in various parts of the world. In addition, the
globalization of the industry means that the U.S. is competing with
more recently industrialized nations that may have newer
equipment and face a lower-paid labor force and less government
regulation. The U.S. motor vehicle industry needs improved
design technology to facilitate better communication between the
parts producers and assemblers located in different parts of the
world, to speed up the design process and to increase overall
productivity (U.S. Department of Commerce, 1998).

Growth of the U.S. aerospace industry is currently affected by
constrained defense spending, foreign competition, investment in

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-3

research and development, increased productivity, and
technological innovation. For the civil aircraft industry, the
importance of exports requires the expansion of foreign markets
for future growth. At the same time, competition from foreign
suppliers will challenge the U.S. aerospace industry’s global
market share. Foreign research and development spending on
aerospace technology is often supported by government policies.
However, the recent GATT Aircraft Agreement should limit
government intervention in the civil aircraft industry, placing the
U.S. on more even footing with newer, foreign aircraft industries
(U.S. Department of Commerce, 1998).

Manufacturers of transportation equipment spent more than $718
million on software and data processing services in 1997 (U.S.
Census Bureau, 1999av through 1999bv) (24 six-digit sectors
reporting out of 30). Computer-aided design (CAD) and
mechanical computer-aided engineering (CAE) software is vital to
this industry as manufacturers are attempting to meet demand for
state-of-the-art design in record time. Auto manufacturers, for
example, desire to shorten the product design process to as little
as 24 months (U.S. Department of Commerce, 1998). CAD/CAE
software allows quick design, quick design adjustments,
simulation without prototype production, and easy transmission of
product design information to every member of the product
development team. Manufacturers of the Boeing 777 used CATIA
in their design process and found the inherent software
capabilities to be very important in letting the design and build
teams see how all components and systems of the aircraft fit and
work together before manufacturing began (U.S. Department of
Commerce, 1998).

Figures B-1a, b, and c provide examples of the ability of CAD and
CAE software to enhance the design process for automobiles.
The figures are CAD visualizations of “the Rocket,” designed by
George Balaschak for a customer to display at the Geneva Auto
Show. Balaschak’s three-dimensional Pro/ENGINEER software
from Parametric Technology Corporation created the transparent
and cutaway models in Figure B-1a as well the model for the body
molds as shown in Figures B-1b and c.

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-4

Source: Pro/Engineer. 1999. <http://www.ptc.com/proe/overview/index.html>.

Source: Pro/Engineer. 1999. <http://www.ptc.com/proe/overview/index.html>.

Source: Pro/Engineer. 1999. <http://www.ptc.com/proe/overview/index.html>.

Figure B-1a. Transparent and
Cutaway Views of the Solid
Model
Pro/ENGINEER provides
three-dimensional visualization
of “the Rocket” design.

Figure B-1b. The Shaded
Model of the Mold Used to
Fabricate the Engine Hood
Panel
Pro/ENGINEER aided Mr.
Balaschak in designing body
molds.

Figure B-1c. The Main Body
Mold Was Machined in Four
Sections and Then Assembled
This view shows three of the
mold sections.

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-5

B.2 CAD/CAM/CAE AND PDM SOFTWARE PRODUCTS
AND THEIR CHARACTERISTICS
Software provides the instructions that lead computer hardware to
perform desired processes. It is the interface between computer
users and computer processors and peripheral equipment.
Software has a higher degree of specificity than the hardware on
which it is run. That is, while software is written to perform a
specific task or closely related set of tasks, the computer may be
able to perform a wide variety of tasks depending on the software
employed.

There are two broad forms of software: systems software and
applications software. Systems software controls, manages, and
monitors computer resources and organizes data. Operating
systems, compilers and interpreters, communications software,
and database management systems are all types of systems
software. Applications software instructs computers in performing
more specific tasks such as word processing, graphic design, and
accounting functions (Freeman and Luc Soete, 1999).

CAD/CAM/CAE and PDM software are types of packaged
applications software used to perform complex design and
engineering functions. CAD/CAM/CAE software is a point tool in
the product development cycle. PDM is a life-cycle software tool
that manages the flow of information and data from one point tool
to another point tool.

B.2.1 CAD/CAM/CAE Software Products

CAD, CAM, and CAE refer to functions that a computer and
peripheral equipment may perform for a user with the aid of
application software.

CAD software functions enable users to design products and
structures with the aid of computer hardware and peripherals
more efficiently than with traditional drafting technologies. The
user creates a computer image of a two-dimensional or three-
dimensional design using a light pen, mouse, or tablet connected
to a workstation or personal computer. The design can be easily
modified. It can be viewed on a high-quality graphics monitor from
any angle and at various levels of detail, allowing the user to
readily explore its physical features. Designers can use CAD

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-6

software to integrate drawings in such a way that adjusting one
component alters every attached component as necessary.

CAM software functions allow a manufacturer to automate
production processes. CAM software includes programs that
create instructions for manufacturing equipment that produces the
design. In addition, the software provides instructions to other
computers performing real-time control of processes, in using
robots to assemble products, and in providing materials
requirements associated with a product design (P.C. Webopaedia,
1996).

CAE software functions allow users to conduct engineering
analyses of designs produced using CAD applications to
determine whether a product will function as desired. The
engineering analysis may involve simulating the eventual
operating conditions and performance of a designed product or
structure. Or users can analyze the relationships between design
components.

Until the mid-1980s, CAD/CAM/CAE software was available only
on computers constructed especially to perform the complex and
specific design, engineering, and manufacturing functions a firm
might need (P.C. Webopaedia, 1996). Now, the software is also
sold for use on personal computers and more general-purpose
workstations.

A small number of software packages dominate the market for
CAD/CAM/CAE software. Each of the leading software packages
stores product designs in a unique file format. These software
packages can be called software design platforms. Some
software design platforms include translation programs that
convert a file into a new format to be used with a different software
package. However, all translations are somewhat imperfect. As a
result, smaller software developers who wish to meet the unique
demands for product “add-ons” or “plug-ins” usually license design
formats from leading software design platform developers to
ensure compatibility.

The presence of a few dominant software applications could be
explained by one of two phenomena: “lock-in,” as a result of
switching costs, and quality domination, as a result of “instant
scalability.” Lock-in occurs when software users continue to use

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-7

an inferior product because of the high, up-front cost of switching
to a superior one. Switching costs arise when learning is involved,
as there is with all experience goods, and when that learning is
not costlessly transferable to the alternative product. These costs
may also exist because of network externalities. This
phenomenon arises when incumbent users of a product receive
welfare increases when additional consumers purchase the
commodity. For example, as more firms use a particular piece of
software, the firm that developed this software has an incentive to
improve this product. These improvements accrue to the newly
adopting firms as well as the incumbent users. Buyer switching
costs can be an important source of competitive advantage
enjoyed by “early movers”—firms that are first to market with a
new product or design. “Lock-in” may be present in the
CAD/CAM/CAE industry for several reasons:

Z A firm using the same CAD/CAM/CAE design platform on
multiple machines will find it costly to add a new type of
software with a file format incompatible with the old
software and its file formats.

Z A firm that has used one software package consistently for
years will lose the benefits of training and experience
specific to that software package.

Z By changing the CAD/CAM/CAE design platform, firms
may lose complete or partial access to their historical data
files.

Z Already established CAD/CAM/CAE design platforms are
likely to be complemented by a larger array of add-on
software packages than are newly available software
design platform.

In contrast with the lock-in explanation for the limited number of
CAD/CAM/CAE software products and few new market entrants, it
is possible that markets are, in fact, dominated by the highest-
quality software applications. Quality domination is an especially
pertinent theory in examining software market domination
because software production benefits from instant scalability—
extra copies of software applications can be copied quickly and
cheaply with the aid of relatively inexpensive CD-ROM duplicators
(Liebowitz and Margolis, 1999). Because of the ease of
reproducing software products, a high-quality product can quickly
take over the market since its production can easily be scaled up
to meet demand. Liebowitz and Margolis find that case studies
and empirical research support the explanation of quality

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-8

domination rather than lock-in in the market for software
applications.

Table B-1 identifies the dominant CAD/CAM/CAE software design
platforms and describes how they are used in industry. The table

Table B-1. Dominant CAD/CAM/CAE Software Products
Several companies produce CAD/CAM/CAE software design platforms.

Product Name Product Description Sources

Bravo Mechanical design software with solid, surface,
wireframe, piping, HVAC, sheet metal, 2D and 3D
modeling capabilities. Features top-down design
and numerical control capabilities for
manufacturing

http://www.ug.eds.com/products/
bravo/introduction.html

CADKEY 3D, 2D, solids and surface modeling. Designs
created with other platforms imported as
“geometry” so that they can be manipulated as if
created in CADKEY.

http://www.cadkey.com/products/
index.html – CADKEY 98
brochure in Adobe Acrobat
format

CATIAa Includes solid, hybrid and sheet metal part design
capabilities. Allows creation and modification of
mechanical and freeform surfaces. Integrates
electrical product design information with
mechanical design. Allows simulation.

http://www.catia.ibm.com/catv5/
newv5r3.html

Formality Allows integrated circuit designers to compare a
design at any stage of the design process with the
original design to check for functional
equivalence.

http://www.sec.gov/Archives/
edgar/data/883241/0000891618-
98-005466.txt

HLDA Plus Allows integrated circuit designers to translate a
graphic design into a textual hardware design
language. Then, the software allows for
simulation and verification of the design.

http://www.sec.gov/Archives/
edgar/data/925072/0001047469-
99-009976.txt

Helixa Mid-range surface and solid modeling package
using a kernel modeler and constraint manager.
Includes a suite of geometric editing tools for
creating and modifying models, investigating
design alternatives, determining interferences and
clearances and calculating mass properties.

http://www.microcadam.com/
product/pages/hds.html

I-DEAS Mechanical design software specifically for users
needing solid modeling technology.

http://www.sec.gov/Archives/
edgar/data/820235/0000906318-
99-000032.txt

IntelliCAD 2D design and drafting software that is highly (but
not perfectly) compatible with the AutoCAD file
format. Works with add-ons designed for
AutoCAD.

http://www.visio.com/company/
indepth.html

IronCAD Provides mechanical engineers with solid
modeling capabilities and easy manipulation of
3D objects. Facilitates design modification at all
stages of the design process.

http://www.ironcad.com/

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-9

Mechanical Desktop Provides solid modeling, surface modeling, 2D
design/drafting and bidirectional associative
drafting capabilities. Translates Desktop files for
exchange with other design systems and
produces a bill of materials.

http://www.sec.gov/Archives/
edgar/data/769397/0000929624-
99-000172.txt

(continued)

Table B-1. Dominant CAD/CAM/CAE Software Products (continued)

Product Name Product Description Sources

Microstation
Modelera

Facilitates solid, surface, and detailed modeling
using a Windows interface. Includes a 3D parts
library and translators to enable designers to
exchange data with users of different design
systems.

http://www.phillynews.com/
inquirer/99/Oct/11/business/
BENT11.html

Parasolid A solid modeling technology designed to be
portable and used with multiple design systems.

http://www.ugsolutions.com/
products/parasolid/

Pro/ENGINEER Facilitates design of detailed solid and sheet
metal components. Aids in building assemblies.
Produces fully documented production drawings
and photorealistic images of designed product.

http://www.ptc.com/proe/
overview/index.html

Seamless® Co-
Verification
Environment (CVE)

Detects errors in hardware/software interfaces in
embedded systems before prototype fabrication.

http://www.mentorg.com/
press_release/jan00/
seamless_pr.html

Solid Edge Mechanical design and drafting software with 2D
and 3D capabilities. Uses unique STREAM
technology to improve speed, effectiveness, and
usability of the software.

http://www.solid-edge.com/
prodinfo/v7/

SolidDesigner Facilitates dynamic modeling (computer
reshaping of design components when one
reference component is changed). Allows
freeform and solid modeling. Provides
accessories to aid team design.

http://www.hp.com/pressrel/
dec95/05dec95a.html

SolidWorksa 3D product design software that functions on a
Windows platform. Features wide range of
interoperability with other mechanical design
formats.

http://www.solidworks.com/html/
Company/cprofile.cfm

SpeedSim Integrated circuit simulation software. Uses
cycle-based technology to reduce the time
requirements for simulation.

http://www.sec.gov/Archives/
edgar/data/914252/0001012870-
99-001140.txt

Think3 A mid-range product providing solids modeling
and advanced surfacing capabilities. Facilitates
the conversion of 2D designs into 3D design
using wireframe modeling. For Windows®95 or
NT®.

http://www.think3.com/content/
docs.content.specs.html

Unigraphics
(UG/Solid Modeling,
UG/CamBase, etc.)

Full range of design capabilities, including
freeform modeling. Available modules provide
advance graphics display, a part library system, a
mold wizard, assistance in building numerical

http://ugsolutions.com/products/
unigraphics/cad

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-10

control machines, and more.

Vectorworks
(formerly MiniCAD)

2D and 3D design capabilities. Includes a
database spreadsheet function, report generation,
and customizable programmability.

http://www.sec.gov/Archives/
edgar/data/819005/0000819005-
99-000003.txt

aProduct developed by a foreign software developer.

also describes a few of the dominant electronic design automation
software packages used for electronic design, verification, and
simulation.

B.2.2 PDM Software Products

Traditional approaches to engineering are linear. Each project
has a set of specific tasks, performed by different groups, in a
specific order that must be accomplished before the project can
be completed. The product development cycle is envisioned as a
series of independent sequential steps that starts at the
generation of the product design and proceeds in an orderly
manner to the finished product. Information is passed from one
stage to the next with minimal feedback. This model is referred to
as serial engineering. However, this model is not completely
accurate. In reality, changes and updates are made to each part
of the development cycle that affect the other phases. If the
product development process is linear, then the changes would
only affect downstream phases. But modern production
processes are not linear; changes are made to product designs
after they have passed through each stage (Gascoigne, 1995).

Serial engineering is poorly equipped to handle this dynamic
process because, as a project advances, engineering changes
pose greater and greater expenses in the form of time delays and
cost increases. Design changes force the whole project back to
the planning phase for modification. Each of the design steps
must then be repeated, resulting in additional effort and increased
time to market.

The modern approach, concurrent engineering, addresses this
problem. Instead of a serial development process, engineers from
all stages of the development and production processes can work
on the project at the same time. Changes at any stage in the
production process are addressed immediately and are
incorporated into the production process. Feedback loops occur

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-11

as soon as the change is made, and all phases in the product
development cycle adjust. This approach decreases the time to
market of new products, reduces development time and costs,
and improves product quality (Gascoigne, 1995).

While product development speed can increase and costs
decrease with concurrent engineering, a problem develops. In
serial engineering, each unit works on its part of the project in
isolation. Once the unit is finished, it is passed on to the next unit.
The passage of information is orderly. In concurrent engineering,
multiple units are working on the project at the same time, and it is
difficult to pass information from one group to the next in an
orderly manner. Monitoring who made changes, incorporating the
changes into the product, and updating the changes are
paramount activities in exploiting the potential of concurrent
engineering. PDM supports these activities. It can be divided in
two components: data management and process management.

Data Management

As engineering work has become reliant on CAD/CAM/CAE,
greater volumes of data are being produced. As more data are
generated, searching data to find specific pieces of information
becomes increasingly costly. Independent of changes dictated by
the shift to concurrent engineering, the shear increase in the
volume of data that is generated by shifting to computer-aided
production techniques necessitated a change in the way data are
handled and manipulated. Data management in PDM is
concerned with monitoring and controlling the information
generated in CAD/CAM/CAE. It is the aspect of the production
process that is concerned with how individual users manipulate
the data on which they are currently working. Data management
is static in that it monitors the data at a particular point in time, but
it does not monitor how it is being changed or altered through
time.

PDM can manage all of the product-related information generated
throughout the product life-cycle. PDM creates a master
document that can be logged out and held in a secure location.
Other engineers working on the project can access a duplicate
copy that they can use in their work. Whenever changes are
made to the master copy, all users are notified and the copy that

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-12

they are using is updated to reflect any changes. PDM tools focus
on automating existing processes and managing electronic
documentation, files, and images. PDM is used almost
exclusively in CAD/CAM/CAE systems.

Data management in PDM monitors both the attributes of the files
as they change through time as well as the documentary
information associated with any changes. Monitoring is widely
defined and includes classification of components in the design,
classification of the documents that have been produced, the
structure of the product being produced, and a system for
querying the data.

Process Management

Process management systems encompass three functions:

Z managing data when someone is working on it (work
management),

Z managing the flow of data between two people (workflow
management), and

Z tracking the changes to the data (work history
management) (PDMIC, 2000).

Process management is the dynamic aspect of PDM—it is
concerned with the movement and transformations of data as it
moves from one user to another.

Engineers and developers are constantly changing and updating
the product throughout the production process. Work
management within PDM monitors and tracks the changes made
to the data. It organizes the information and implications for other
parts of the production process that are created by changes that
one engineer makes to the product in different areas. Work
management tracks every footstep, and the implications from
those footsteps, that the engineer makes in the production
process.

Workflow management focuses on the movement of information
across units within an organization. How information is passed
back and forth between the units is the realm of workflow
management. Workflow management bundles the project in
logical units, often called packets, of information that allow each
unit to work on the appropriate sections. When changes are

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-13

made to each packet, information is then sent to all of the other
units that need to know about the change. Workflow management
tracks the changes that are made that determine what group or
units need to see the data after a change has been made.

Work history management tracks all of the changes that have
been made by individual units or departments and how those
changes have affected other units or departments. It captures
and records the entire history of the project and all of the team
members of the project. Work history management can then be
used for auditing the production process as well as evaluating
specific units with the production process.

Benefits from PDM

The most frequently cited benefit of PDM is reduction in time to
market for new products. The time reduction from PDM occurs in
several ways. First, the time to perform the overall task is
decreased because data are made available as soon as they are
needed. Second, because of concurrent engineering, bottlenecks
do not develop in the production process because no queue exists
in the project development process. Third, the feedback from
changes is almost immediate, and all units know they are working
on the latest version of the product this decreases the amount of
time spent on corrections and reworking. Improved feedback
loops have an additional advantage: by ensuring that all
employees are working on the most recent version of the project
and making changes available immediately, the risk of failure is
also reduced. However, care still must be exercised. Just
because the data are the most recent version does not mean the
data are correct.

In addition, PDM has the potential to generate other benefits.
Because PDM reduces the amount of time spent searching for
documents, checking the freshness of each document, and
reworking existing products, engineers are able to spend more
time on designing products and developing new and innovative
ideas. Historically, over 25 percent of a designer’s effort is
consumed by reworking or searching for documentation. PDM
has the potential to substantially reduce this percentage (PDMIC,
2000).

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-14

Another benefit from PDM is its ability to leverage knowledge from
other products. Many problems already have a solution; it is a
question of finding rather than rediscovering it. In the traditional
approach to product development, it was often easier to reinvent an
existing process or idea rather than track down an existing solution.
Because PDM organizes existing knowledge and allows for easy
searches of that knowledge, existing solutions will be easier to find;
a shift from customized production to component production occurs.

B.3 THE DEVELOPMENT AND DEVELOPERS OF
CAD/CAM/CAE AND PDM SOFTWARE
Two major groups of firms are involved in the development of
CAD/CAM/CAE and PDM products, the developers of the
software product and the testers of the software product.

B.3.1 Software Publishers (Sector 5112)

Software publishers produce and distribute software of all types.
Our focus is on the subset of the industry that produces the
CAD/CAM/CAE and PDM software products described in
Section 6.2.

CAD/CAM/CAE Firms

CAD/CAM/CAE software developers include many
establishments; however, about 20 firms dominate the market.
These well-known software developers include those that produce
the design platforms for CAD/CAE software and the most
respected EDA software developers. Testing services may be
provided by the developer or contracted for from specialized
suppliers in the computer systems design and related services
sector.

Table B-2 lists the U.S. developers of the most widely used
CAD/CAE design platforms as well as the prominent EDA
software developers. In some cases, the current owner of the
proprietary rights to a software package is not the original owner.
However, because the owners of the proprietary rights develop
upgrades and new releases of the original software package, they
are designated as developers in Table B-2. Developers who
concentrate only on AEC or GIS software are not listed because
they are outside the scope of this study. In most cases, data in

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-15

the table come directly from annual reports filed with the
Securities Exchange Commission. Where this is not the case, the
data source is noted. The table includes revenues, costs, and
employment, with specific information on R&D expenses.

As noted previously, development is large cost factor in the
production of software. Table B-2 shows that 7 to 35 percent of
the total costs of CAD/CAM/CAE software developers were for
R&D. Information on R&D spending for other industries in recent
years shows such spending to be proportionately higher in the
software

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-16

Table B-2. Developers of CAD/CAM/CAE Software, 1997
CAD/CAM/CAE software developers spend a larger percentage of their total revenues on R&D than do other U.S.
industries.

Costs ($thousands)
Employment
(thousands)

Company
Total Revenues
($thousands)a Totalb R&Dc

R&D Costs
as a Share

of Total
Costs Total R&D

R&D
Employment
as a Share

of Total
Employment

i2 Technologies (formerly
Aspect Development)

$1,12 5,65 1,87 33%

Autodesk $632,35 $541, $122,4 23% 2,47

Avant! Corporation $227,14 $179, $56,7 32% 822 404 49%

Cadkey Corporationd NA

Bentley Systems, Inc.e $175,00 960

Cadence Design Systems,
Inc.

$1,2 $829, $179,4 22% 4,20 1,30 31%

Hewlett-Packard (owner of
CoCreate)

$47,06 $43, $3,3 8%

IKOS Systems Inc. $40,89 $64, $14,4 22% 256 100 39%

Intergraph $1,03 $1, $83,7 7% 6,70

International Business
Machines—Software
Segmentf

$11,84 $7, $731,6 10%

International
Microcomputer Software

$62,47 $55, $8,6 16% 338 115 34%

MacNeal Schwendlerg $125,39 $135, $13,6 10% 745

Mentor Graphicsh $490,39 $332, $117,8 35% 2,60

OrCAD $47,65 $45, $11,5 25% 261 101 39%

Parametric Technologiesi $1,0 $732, $91,6 13% 4,91 958 20%

Quickturn $104,10 $147, $23,4 16% 383 129 34%

Structural Dynamics
Research Corporation

$403,02 $357, $64,1 18% 2,36 644 27%

Summit Design Inc.! $31,43 $36, $7,7 21% 178 106 60%

Synopsys, Inc. $717,94 $598, $154,4 26% 2,59

Unigraphicsj $403,57 $406, $103,0 25% 2,20

Visiok $100,77 $75, $16,1 21% 355 140 39%

Wind River Systems Inc. $129,40 $92, $17,6 19% 598 181 30%

aIncludes data from subsidiaries and revenues from hardware sales, where applicable.
bIncludes costs of revenue and operating expenses; taxes and interest income excluded; acquired technology and

merger expenses not included unless considered as part of research and development expenses in the annual
report.

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-17

Table B-2. Developers of CAD/CAM/CAE Software (continued)

cR&D expenditures may or may not include capitalization, depending on how the figure was presented on the
balance sheet of the annual report.

dRevenue and cost information not available. Cadkey is a private corporation.
eSource: Bentley Systems Incorporated. Corporate Backgrounder obtained November 1999.

<http://www.bentley.com/bentley/backgrnd.htm>.
fSource: International Business Machines. 1998. Annual Report.

<http://www.ibm.com/annualreportt/1998/discussion/ibm98armd04.html>.
gSource: The MacNeal Schwendler Corporation. 1998. Annual Report.

<http://www.mscsoftware.com/ir/annual.html>.
hSource: Mentor Graphics Corporation. 1998. Annual Report.

<http://www.mentorg.com/investor_relations/MentorAnnual.pdf>.
iSource: Parametric Technology Corporation. 1998. Annual Report.

<http://www.ptc.com/company/pmtc/1998/index.htm>. As obtained October 1999.
jSource: Unigraphics Solutions Incorporated website. <http://www.ug.eds.com>.
kSource: 10K report and Visio Corporation. 1998. Annual Report. <http://www.visio.com/files/ar98/Visar98.pdf>.
Source: National Science Foundation. 1999. Research and Development in Industry: 1997.

industry than in other sectors of the economy. For example, R&D
spending was only 2.9 percent of the net sales of all industries in
1997 (National Science Foundation [NSF], 1999). The service
industry, of which the software industry is a part, spent 8.6 percent
of its net sales on R&D in 1997, still well below the average R&D
expenditures of CAD/CAM/CAE industry leaders listed in Table B-
2 (NSF, 1999). In fact, the computer and data processing
services industry, a more specific industry group including
software developers, spent a larger proportion of its net sales on
R&D (13.3 percent) than did any other industry group surveyed by
the NSF in 1995. The above data actually underestimate the
differences in R&D spending between the CAD/CAM/CAE industry
and other industries, because the NSF data are based on net
revenues (gross revenues minus operating expenses, cost of
revenue and taxes), which are smaller than gross revenues. If the
NSF percentages were based on total revenues, they would be
even smaller.

Appendix A provides additional information for the software
developers included in Table B-2 as well as several hundred others.
The appendix includes a partial list of developers of less well-known
design CAD/CAE platforms and accessory software products as
well as some EDA software developers that produce a smaller
range of products than the often-cited developers listed in Table B-
2. The software developers in the appendix constitute the

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-18

population of software developers to be surveyed as part of this
project.

PDM Firms

PDM systems emerged in the early 1980s when software and
engineering companies originally developed in-house PDM
projects. These firms realized that paper-based systems to
monitor the flow of data were becoming increasingly unwieldy and
uncontrollable. During the late 1980s, some of these companies
started to market their internally developed PDM systems to other
organizations. The initial products were large databases that
engineers could search to find documents. Because most of the
software firms that developed the original PDM products were in
the CAD/CAM/CAE business, they focused their efforts on
developing PDM systems for their existing customers.

The early PDM systems’ main focus was on monitoring and
controlling engineering data after the point of initial development
to the end of the manufacturing process. Although PDM first
focused on managing the manufacturing process, during the early
1990s it was also used to monitor activities farther upstream in the
product cycle. During the product inception stage, PDM is now
used to track the data generated by engineers. In the later half of
the 1990s, business operations became more interrelated, and
PDM systems are now used to manage CAD/CAM/CAE systems
as well as other engineering and business programs. The recent
innovations have transformed PDM from a database application to
an entire workflow management system.

Numerous firms sell or provide PDM services. Some encompass
the entire PDM product cycle by developing, selling, installing, and
supporting a specific product. Other firms only engage in specific
parts of the production process. Table B-3 lists the categories of
firms engaged in PDM and describes their activities.

Over 50 domestic and 25 international firms produce PDM
products. Table B-4a provides the relative market shares for the
eight largest PDM software and services vendors. Table B-4b
provides sales and employment information on the domestic PDM
product vendors.

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-19

Table B-3. Categories of Firms Engaged in PDM

Firm Type Description of Activities

PDM Product Vendors Encompasses the whole organization by providing
complete document management from planning to
manufacturing

Document and Image Management
Product Vendors

View, mark-up, plot, print, and convert document formats

PDM Support Product Vendors Implementation, installation, training, modification, and
conversion services and system consulting

Value-Added Resellers Sale and installation of existing PDM products

System Integrators Provides technical assistance, consulting, training and
software design, integration, and development

Consultants Design and develop customized applications to support
customer-specific requirements

Source: Product Data Management Information Center. <http://www.pdmic.com>. As obtained on March 13, 2000.

Table B-4a. Market Shares for the Eight Largest PDM Software and Services Vendors

Company Market Share (%)

i2 Technologies (formerly Aspect Development) 8

Documentation 7

Engineering Animation Inc. 6

IBM/Enovia 5

MatrixOne 5

Parametric Technology Corporation 4

Structural Dynamics Research Corporation/Metaphase 3

UGS, Inc. 3

Source: CIMdata. 2000. <http://www.cimdata.com/PR000307B.htm>.

Table B-4b. Developers of PDM Software, 2000

Company Sales Employment
Accel Technologies, Inc. 11 60
Agile Software Corp. 16.8 156
Applicon 135.5 200
Autodesk Inc. 740.2 2,716
Auto-trol Centura 2000 8.7 177
BaanCompany 736 5,101

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-20

(continued)

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-21

Table B-4b. Developers of PDM Software, 2000 (continued)

Company Sales Employment
CACI-Federal, Inc. 441.7 4,228
Think3, Inc. 32.03 250
Ceimis Enterprises, Inc. 2.5 25
CMstat Corporation 2.5 25
CoCreate (subsidiary of Agilent Technologies 8 70
CONCENTRA 100 450
Concurrent Systems, Inc. NA NA
Configuration Data Services 2.5 15
ConsenSys Software Corporation 7.5 50
Custom Programming Unlimited 2 30
DataWorks Corporation 25.9 300
Eignor & Partner, Inc. 19 95
Engineering Animation Inc. 70.7 957
Enovia Corp. 12 90
Formation Systems Inc. 10.9 85
FORMTEK, Inc. A Lockheed Martin Co. 22 150
Gerber Information Systems NA NA
i2 Technologies (formerly Aspect Development) 1,126.3 6,000
IBM 8,093 316,303
IDFM, Inc. 6 43
Ingenuus Corporation 7.5 95
Innovative Data Concepts, Inc. NA NA
InSight NA NA
Integrated Support Systems, Inc. 9.2 35
Integrated Systems Technologies, Inc NA NA
IntegWare NA NA
Intergraph Corporation 690.5 4,600
Intergraph Electronics Corporation NA NA
Interleaf, Inc. 45.2 338
Kruise Inc. NA NA
Matrix One NA NA
MERANT - PVCS 400 2,000
Mesa Systems Guild, Inc. 2 35
Metaphase Technology 403 2,500
Modultek Inc. NA NA
Mystic Management Systems, Inc. 2 9
NEC Systems, Inc. NA NA
NetIDEAS, Inc. NA NA
Network Imaging Systems Corp NA NA
NovaSoft Systems, Inc. NA NA
Open Text Corp. 112.9 408
Oracle Corporation 8827 43800

(continued)

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-22

Table B-4b. Developers of PDM Software, 2000 (continued)

Company Sales Employment
Parametric Technology Corporation 1057.6 4998
Parametric Technology Corporation 928.4 4725
Prefered Technology Corp. NA NA
PROCAD, Inc. NA NA
SDRC 2 9
Sherpa Corporation NA NA
Structural Dynamics Research Corporation/Metaphase 340.8 1637
The Business Process Performance Co. NA NA
TMSSequoia 5 46
Unigraphics Solutions 400 2200
Waware Systems NA NA
Workgroup Technology, Inc. 8.6 110
Metaphase Technology 403 2500
Modultek Inc. NA NA
Mystic Management Systems, Inc. 2 9
NEC Systems, Inc. NA NA
NetIDEAS, Inc. NA NA
Network Imaging Systems Corp NA NA
NovaSoft Systems, Inc. NA NA
Open Text Corp. 112.9 408
Oracle Corporation 8827 43800
Parametric Technology Corporation 1057.6 4998
Prefered Technology Corp. NA NA
PROCAD, Inc. NA NA
SDRC 2 9
Sherpa Corporation NA NA
Structural Dynamics Research Corporation/Metaphase 340.8 1637
The Business Process Performance Co. NA NA
TMSSequoia 5 46
Unigraphics Solutions 400 2200
Waware Systems NA NA
Workgroup Technology, Inc. 8.6 110
Prefered Technology Corp. NA NA
PROCAD, Inc. NA NA
SDRC 2 9
Sherpa Corporation NA NA
Structural Dynamics Research Corporation/Metaphase 340.8 1637
The Business Process Performance Co. NA NA

Source: Standard and Poor’s Net Advantage ; Reference USA; Hoovers Online, http://www.hoovers.com

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-23

B.3.2 Computer Systems Design and Related Services (Sector 5415)

Establishments in this sector are affiliated with the CAD/CAM/CAE
and PDM industry in two important ways: as suppliers of testing
services to software developers and users and as service
providers aiding CAD/CAM/CAE and PDM software in computer
systems integration, software installation, and custom
programming.

Table B-5 presents current information on the number of
establishments providing computer system design and related
services. CAD/CAM/CAE and PDM software developers and
service providers are a subset of the population listed in Table B-
5.

Table B-5. Industry Profile for Computer Systems Design and Related Services, 1997

NAICS
Code Description

Number of
Establishmen

ts

Value of
Shipments or

Receipts
(thousands)

Number of
Employees

5415 Computer systems design and related
services

72,278 108,96 764,659

541511 Custom computer programming
services

31,624 38,30 318,198

541512 Computer systems design services 30,804 51,21 337,526
5415121 Computer systems integrators 10,571 35,27 207,741
5415122 Computer systems consultants (except

systems integrators)
20,233 15,94 129,785

541513 Computer facilities management
services

1,445 15,11 71,821

541519 Other computer related services 8,405 4,33 37,114

Source: U.S. Census Bureau. December 1999bx. “1997 Economic Census, Professional, Scientific, and Technical
Services.” Geographic Area Series.

B.4 PRODUCTION AND CONSUMPTION OF
CAD/CAM/CAE AND PDM SOFTWARE PRODUCTS
The world market for CAD/CAM/CAE software is about $8.0 billion
annually. U.S. manufacturers purchased approximately $2.5
billion of CAD/CAM/CAE software in 1997. U.S. software
developers sold twice that amount throughout the world in 1997.

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-24

B.4.1 Production

The U.S. supplies the majority of the CAD/CAM/CAE software
sold on the world market, although U.S. suppliers do compete with
developers in Japan, Asian-Pacific countries, and Europe. In
1997, U.S. software developers sold about $5.4 billion worth of the
almost $8.0 billion worth of CAD/CAM/CAE software sold in the
world. Figure B-2 shows the relative world market shares of other
world regions. Japan and Asian-Pacific countries supply
20 percent of the world’s CAD/CAM/CAE software. Europe
supplies 10 percent (U.S. Department of Commerce, 1998).

United States
68%

Japan/Asia
20%

Europe
10%

Rest of World
2%

Source: U.S. Department of Commerce. 1998. U.S. Industry & Trade Outlook
‘98. New York: McGraw-Hill.

B.4.2 Consumption

Although the U.S. supplies 68 percent of the world’s
CAD/CAM/CAE software, world demand for the software is more
evenly distributed. Because of this, more than 36 percent of the
1997 revenues of U.S. CAD/CAM/CAE suppliers were derived
from overseas sales. Figure B-3 shows the relative consumption
of the software throughout several regions of the world. U.S.
manufacturers accounted for 32 percent ($2.5 billion) of the world
demand for the software. European manufacturers purchased
nearly the same amount of software in 1997, accounting for
another 31 percent of the world demand. Japanese
manufacturers accounted for nearly $2.0 billion (25 percent) of the
demand (U.S. Department of Commerce, 1998).

Figure B-2. The Producers of
CAD/CAM/CAE Software, 1997
The U.S. produces the majority
of CAD/CAM/CAE software on
the world market.

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-25

United States
32%

North America
3%

Europe
31%

Asia/Pacific
5%

Japan
25%

Rest of World
5%

Total Sales = $8.0 billion

Source: U.S. Department of Commerce, 1998, U.S. Industry & Trade Outlook
‘98. New York: McGraw-Hill.

Compared to CAD/CAM/CAE, a larger share of PDM system
consumption is in North America. Figure B-4 shows the relative
amount of consumption of PDM by geographic region in 1999.
Based on estimated total sales of $1.76 billion, this implies that
North America purchased over $800 million of PDM products,
Europe purchased over $600 million worth of PDM products, and
the Asia-Pacific region purchased under $250 million worth
(CIMdata, 2000).

Figure B-3. The Consumption
of CAD/CAM/CAE Software,
1997
U.S. manufacturers purchase
half as much CAD/CAM/CAE
software as is sold by U.S.
software developers.

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-26

United States
47%

Asia Pacific
14%

Europe
38%

Rest of World
1%

Total Sales = $1.76 billion

Source: CIMdata. 2000. <http://www.cimdata.com/PR000307B.htm>

Figure B-4. Regional
Distribution of PDM Revenues,
1999

	Executive Summary
	ES.1ISSUES OF SOFTWARE QUALITY
	ES.2SOFTWARE TESTING INADEQUACIES
	ES.3SOFTWARE TESTING COUNTERFACTUAL SCENARIOS
	ES.4ECONOMIC IMPACT OF AN INADEQUATE SOFTWARE TESTING INFRASTRUCTURE: AUTOMOTIVE AND AEROSPACE INDUSTRIES
	ES.5ECONOMIC IMPACT OF AN INADEQUATE SOFTWARE TESTING INFRASTRUCTURE: FINANCIAL SERVICES SECTOR
	ES.6NATIONAL IMPACT ESTIMATES

	Introduction to Software Quality and Testing
	1.1SOFTWARE QUALITY ATTRIBUTES
	1.2SOFTWARE QUALITY METRICS
	1.2.1What Makes a Good Metric
	1.2.2What Can be Measured
	1.2.3Choosing Among Metrics

	1.3SOFTWARE TESTING
	1.4THE IMPACT OF INADEQUATE TESTING
	1.4.1Failures due to Poor Quality
	1.4.2Increased Software Development Costs
	1.4.3Increased Time to Market
	1.4.4Increased Market Transaction Costs

	Software Testing Methods and Tools
	2.1HISTORICAL APPROACH TO SOFTWARE DEVELOPMENT
	2.2SOFTWARE TESTING INFRASTRUCTURE
	2.2.1Software Testing Stages
	General Testing Stages
	Specialized Testing Stages
	User-Involved Testing Stages

	2.2.2Commercial Software Testing Tools
	Test Design and Development Tools
	Test Execution and Evaluation Tools
	Accompanying and Support Tools

	2.3SOFTWARE TESTING TYPES
	2.3.1Conformance Testing
	2.3.2Interoperability Testing
	Performance Testing

	2.3.4Relationship between Software Stages, Testing Types, and Testing Tools
	2.3.5Standardized Software Testing Technologies

	Inadequate Infrastructure for Software Testing: Overview and Conceptual Model
	3.1SOFTWARE TESTING INADEQUACIES
	3.1.1Integration and Interoperability Testing Issues
	3.1.2Automated Generation of Test Code
	3.1.3Lack of a Rigorous Method for Determining When a Product Is Good Enough to Release
	3.1.4Lack of Readily Available Performance Metrics and Testing Procedures
	3.1.5Approaches for Improving Software Testing Infrastructure

	3.2CONCEPTUAL ECONOMIC MODEL
	3.3SOFTWARE DEVELOPERS
	3.3.1Cost Framework
	3.3.2Factors Influencing the Profit-Maximizing Level of R&D Expenditures
	After-Sales Service Costs

	3.4END USERS
	3.4.1Cost Framework

	3.5THE MARKET FOR SOFTWARE PRODUCTS
	3.5.1Quality’s Impact on Market Prices

	3.6MODELING AN INADEQUATE SOFTWARE TESTING INFRASTRUCTURE
	3.6.1Inadequate Infrastructure’s Impact on the Co
	3.6.2Inadequate Infrastructure’s Impact on the Co
	3.6.3Inadequate Infrastructure’s Impact on End-Us
	3.6.4Aggregate Impact

	3.7THE TIME DIMENSION
	3.8CONCLUSION

	Taxonomy for Software Testing Costs
	4.1PRINCIPLES THAT DRIVE SOFTWARE TESTING OBJECTIVES
	4.1.1Testing Activities
	4.1.2Detecting Bugs Sooner
	4.1.3Locating the Source of Bugs Faster and with More Precision

	4.2SOFTWARE DEVELOPERS’ COST TAXONOMY
	4.2.1Resource Categories
	4.2.2Summary of Developer Technical and Economic Metrics

	4.3SOFTWARE USERS’ COST TAXONOMY
	4.3.1Pre-purchase Costs
	4.3.2Installation Costs
	4.3.3Post-purchase Costs

	Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing
	5.1DEFINING THE COUNTERFACTUAL WORLD
	5.1.1Developers’ Costs of Identifying and Correct
	5.1.2Counterfactual Scenario for Developers
	5.1.3Counterfactual Scenario for Users

	5.2CUSTOM VERSUS COMMERCIAL SOFTWARE PRODUCTS
	5.3ESTIMATING SOFTWARE DEVELOPER COSTS
	5.4ESTIMATING SOFTWARE USER COSTS
	5.5PERIOD OF ANALYSIS
	5.6INDUSTRY-SPECIFIC USER COSTS

	Transportation Manufacturing Sector
	6.1OVERVIEW OF CAD/CAM/CAE AND PDM SOFTWARE IN THE TRANSPORTATION MANUFACTURING SECTOR
	6.1.1Use of CAD/CAM/CAE and PDM Software
	6.1.2Development of CAD/CAM/CAE and PDM Software

	6.2SOFTWARE DEVELOPER COSTS IN THE TRANSPORTATION MANUFACTURING SECTOR
	6.2.1Estimation Approach
	6.2.2Survey Findings
	6.2.3Cost Impacts Per Employee for Software Developers
	6.2.4Industry-Level Impact

	6.3END-USER COSTS IN THE TRANSPORTATION MANUFACTURING SECTOR
	6.3.1Survey Method
	6.3.2Survey Response Rates and Industry Coverage
	6.3.3Survey Findings
	Incidence and Costs of Software Errors and Bugs
	Software Life-Cycle Costs
	Purchase Decision

	6.3.4Costs of Bugs and Errors Per Employee
	Typical Company-Level Impacts

	6.3.5Partial Reduction of Software Errors

	6.4USERS’ INDUSTRY-LEVEL IMPACT ESTIMATES

	Financial Services Sector
	7.1OVERVIEW OF THE USE OF CLEARINGHOUSE SOFTWARE AND ROUTERS AND SWITCHES IN THE FINANCIAL SERVICES SECTOR
	7.1.1Overview of Electronic Transactions in the Financial Services Sector
	Firms in the Financial Services Sector

	7.1.2Software Used by Financial Services Providers
	Major Producers of FEDI and Clearinghouse Software
	Impacts of Inadequate Testing

	7.1.3Software Embedded in Hardware Used to Support Financial Transactions
	Major Producers of Routers and Switches
	Current Testing Inefficiencies

	7.2SOFTWARE DEVELOPER COSTS IN THE FINANCIAL SERVICES SECTOR
	7.2.1Industry Surveys
	7.2.2Survey Findings
	7.2.3Cost Impacts Per Employee for Software Developers
	7.2.4Industry-Level Impacts

	7.3SOFTWARE USER COSTS IN THE FINANCIAL SERVICES SECTOR
	7.3.1Survey Method
	7.3.2Survey Response Rates and Industry Coverage
	7.3.3 Survey Findings
	Incidence and Costs of Software Errors and Bugs
	Software Life-Cycle Costs
	Purchase Decision

	7.3.4Software User Costs Per Transaction
	7.3.5Partial Reduction of Software Errors
	7.3.6Users’ Industry-Level Impact Estimates

	National Impact Estimates
	8.1PER-EMPLOYEE TESTING COSTS: SOFTWARE DEVELOPERS
	8.2PER-EMPLOYEE COSTS: SOFTWARE USERS
	8.4NATIONAL IMPACT ESTIMATES
	8.5LIMITATIONS AND CAVEATS

	References
	Appendix A: Glossary of Testing Stages and Tools
	A.1GENERAL TESTING STAGES
	A.2SPECIALIZED TESTING STAGES
	A.3USER-INVOLVED TESTING STAGES
	A.4TEST DESIGN AND DEVELOPMENT TOOLS
	A.5TEST EXECUTION AND EVALUATION TOOLS
	A.6ACCOMPANYING AND SUPPORT TOOLS

	Appendix B: CAD/CAM/CAE/PDM Use and Development in the Transportation Sector
	B.1TRANSPORTATION EQUIPMENT MANUFACTURERS \(SECT
	B.2CAD/CAM/CAE AND PDM SOFTWARE PRODUCTS AND THEIR CHARACTERISTICS
	B.2.1CAD/CAM/CAE Software Products
	B.2.2PDM Software Products
	Data Management
	Process Management
	Benefits from PDM

	B.3THE DEVELOPMENT AND DEVELOPERS OF CAD/CAM/CAE AND PDM SOFTWARE
	B.3.1Software Publishers (Sector 5112)
	CAD/CAM/CAE Firms
	PDM Firms

	B.3.2Computer Systems Design and Related Services (Sector 5415)

	B.4PRODUCTION AND CONSUMPTION OF CAD/CAM/CAE AND PDM SOFTWARE PRODUCTS
	B.4.1Production
	B.4.2Consumption

